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1. INTRODUCTION

The overall objective of this research was to develop, test, and evaluate in a speech

recognition application multisensor configurations of existing sensors for transducing speech

that is more immune to acoustic background noise than is possible with any single microphone.

In this section, we review briefly the results of the previous RADC-sponsored multisensor

speech input project that provided the basis for the present effort, state the specific goals of

this research, present the highlights of the work, and describe the organization of the report.

1.1 Review of Multisensor Speech Input Project

In the previous RADC-sponsored multisensor research [1, 2], we performed detailed

measurements of the sound field in the vicinity of the mouth and neck during speech using

pressure and pressure gradient (noise-cancelling) microphones and an accelerometer that

measures the skin vibrations. We used the first-order pressure gradient output (denoted in

this report as M12) from a specially-constructed array of three closely-spaced electret
microphones, ElectroVoice's first-order gradient microphone EV 985, Vought's prototype

second-order gradient microphone, the electret pressure microphone M1 of our three-.

microphone array, and a reference Bruel and Kjaer condenser pressure microphone (located

about one foot from the speaker's lips). The accelerometer we used is Model 501, which is

marketed by Vibro-Meter Corporation (formerly BBN Instruments Corporation). We

performed the sound-field measurements in a noise-free anechoic chamber, using five talkers,

a specially selected set of speech materials, and eleven selected positions for each sensor, which
are illustrated in Fig. 1. Compared to the microphones we used, the accelerometer is

essentially insensitive to acoustic noise, especially at low frequencies. We investigated in detail

the data from one male talker both using long-term and short-term spectral analyses and also

using, as an objective measure of speech intelligibility, the articulation index, which we

computed assuming ambient noise typical in the cockpit of an F-15 fighter aircraft. From the

results of this investigation, we determined the best position for each sensor; also, we
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developed a two-sensor configuration involving the accelerometer attached to the speaker's

throat and one of the gradient microphones located in front of the lips. The two-sensor signal

is the sum of filtered and amplitude-adjusted versions of the two individual sensor signals, with

the accelerometer providing the low-frequency information and the gradient microphone

providing the high-frequency information. Results from formal speech intelligibility and

quality tests in simulated F-I aircraft cockpit noise showed clearly that each of the two-sensor _

signals under test outperformed the signal from the gradient microphone alone and that the

performance improvement generally increased with the noise level.

1.2 Research Goals of this Project

The multisensor configuration that we have sought to develop must provide additional,

new acoustic information not presently used, a more reliable and accurate transduction of the

presently used information, or a more robust way of extracting the same information in a
Ip

hostile acoustic environment. Our goal in this project was to develop, test, and evaluate in a

speech recognition application two types of multisensor configurations. The first type is called

the single-input multisensor configuration, which combines the individual sensor signals to

provide a single speech signal input to any speech processing system. (Notice that the two-

sensor systems develo, - in the previous multisensor project belong to this first type.) The

second type is called the parallel-input multisensor configuration, which provides several

parallel inputs; these input signals are analyzed to extract features or parameters for use in

applications such as speech recugnition and speech-training aids [3]. The general objective of

this project was to achieve noise-immune speech transduction with single-input multisensor

systems and noise-immune feature extraction with parallel-input multisensor systems. Specific

objectives of our work on single-input multisensor systems were to develop and test a number

of multisensor systems, select the most promising ones, and evaluate the selected systems in

simulated F-15 aircraft cockpit noise, using a commercial speech recognition device. The

specific objective of our work on parallel-input multisensor systems was to demonstrate the

feasibility of a speech recognition system that effectively uses the multiple, parallel inputs.

3 '
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1.3 Highlights of the Work

Given below is a list of the highlights of our work:

Long-term and short-term spectral analyses and articulation index study of the

previously measured data of one male and one female speaker, transduced using

different sensors at different near positions. The results of this investigation were

used 1) -t determine over the two speakers the extent of variability of the best

location and the spectral properties of each sensor and 2) as a basis for developing

new multisensor configurations (Section 2).

* Development and testing of a method of spectrally shaping the accelerometer

signal by emphasizing high-frequency amplitudes relative to low-frequency
amplitudes, in an attempt to improve the performance of the single-input two-

sensor system involving an accelerometer and a gradient microphone (Section 3).

* Development of a new single-input two-microphone system, with the Vought

second-order gradient microphone providing the low-frequency information and

the first-order gradient microphone M12 providing the high-frequency

st information. The two-microphone signal has a higher overall signal-to-noise ratio
than either of the gradient microphones (Section 4).

e Development of several additional single-input multisensor systems involving all or

different subsets of the sensors, throat accelerometer, Vought, M12, and EV 985
located under one nostril (Section 5).

* Multichannel tape recording of the following items from one male and one female

talker, in the quiet and in 95 dB and 115 dB levels of simulated F-15 aircraft
cockpit noise: Diagnostic Rhyme Test (DRT) word lists for speech intelligibility

testing, a set of six sentences for speech quality testing, and a 20-word Texas

Instruments (TI) vocabulary and a specially selected 44-word minimal pairs

vocabulary for isolated-word speech recognition testing (Section 6).

*Formal speech intelligibility and quality testing of selected single-input two-sensor

systems and individual sensors in 95 dB and 115 dB noise. The two-sensor systems
* tested produce essentially the same DRT scores and quality ratings in 95 dB and

4
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much higher DRT scores and quality ratings in 115 dB, as compared to the

constituent individual microphones (Section 6).

Detailed speech recognition performance evaluation of selected single-input two-
sensor systems and individual sensors in noise, using the Verbex 4000 recognizer in
the isolated-word mode. For this evaluation, we used the TI vocabulary and two

subsets of our minimal pairs vocabulary. Because of the training problems of the
Verbex unit in high noise and because of the limitations of the vocabularies we
used, we cannot draw strong definitive conclusions from the results of this

evaluation. However, the results provide us with sufficient evidence to recommend

the use of a two-sensor system involving the accelerometer and a gradient
microphone, together with a variable cutoff lowpass filter to increase the extent of
band-limiting of the two-sensor signal as a function of the ambient noise level

(Section 7).

* Feasibility demonstration of parallel-input multisensor speech recognition, using
selected phonetic discrimination tests. We used BBN's versatile Acoustic-Phonetic
Experiment Facility for this demonstration and obtained substantially higher
phonetic discrimination accuracy for a feature-based parallel-input multisensor

system we investigated than for the gradient microphones we used (Section 8). .-

* Investigation of a long-vector approach to parallel-input multisensor speech
recognition. In this approach, we formed, on a frame-by-frame basis, a composite

(or long) vector of parameters by simply collecting together the parameters
extracted from each of the parallel inputs and evaluated the long-vector data using
BBN's research speech recognition system, which employs vector quantization and
a discrete hidden Markov model. The results of this investigation show a

substantially higher recognition accuracy for a parallel-input system consisting of
M12 and a throat accelerometer than for either constituent sensor (Section 9).

1.4 Organization of the Report

Section 2 presents the results of analyses we performed on previously measured data for

two speakers. Sections 3-7 deal with single-input multisensor systems, and Sections 8 and 9

5
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deal with parallel-input multisensor systems. It is important to keep in mind the two
groupings of sections since we frequently do not use the term 'single-input' or 'parallel-input'

when we refer to a multisensor system, although which type of system we mean should be clear

from context. Contents of Sections 3-9 were highlighted in the previous subsection. In Section

10, we provide a summary and present major conclusions. Appendix A is a listing of the

contents of the quality-test database, TI vocabulary, and minimal pairs vocabulary. Appendix

B describes the acoustic-phonetic features we used in phonetic discrimination tests presented

in Section &.
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2. ANALYSIS OF TWO-SPEAKER DATA

As we noted in Section 1.1, speech data collected in a noise-free anechoic chamber as part

of the previous multisensor speech input project was digitized and analyzed for one speaker

(male, KK) only [1]. In this project, we digitized the data for a second speaker (female, BF),

and investigated the data of both speakers using long-term and short-term analyses. The

objectives of this investigation were to 1) examine if the spectral properties we reported in [1]

for one speaker continue to be valid for the second speaker; 2) determine the extent to which

location of each sensor needs to be tailored to the individual speaker; and 3) gather supportive

data for developing both single-input and parallel-input multisensor systems.

2.1 Informal Listening Tests

For speaker BF, we played out the digitized waveform files for all eleven accelerometer

positions to determine, through informal listening, which positions yielded the most intelligible

speech. All the files were highpass filtered at 200 Hz on playback to reduce "boominess" [1].

We found that position 3 was the most intelligible, closely followed by positions 11, 5, and 10.

As was the case with speaker KK, position 7 w s barely intelligible. (The results for informal -4

listening tests conducted with KK's data are discussed in [1], pages 50-51.) The accelerometer % 6.

signal in position 10 was corrupted by scratching noises, possibly caused by improper

mounting of the accelerometer or by its coming into contact with a shirt collar; also, some of

the vowel sounds recorded in position 10 had more of a buzzing quality than those recorded in

positions 3, 11, and 5. Once again, this could have been caused by improper mounting of the

accelerometer. Of the 4 top-rated positions mentioned above, position 3 produced the least

"boominess". We expect that with proper mounting of the accelerometer, positions 3 and 10

should be equivalent. Thus, the position that produced the most intelligible speech was the $

same (3 or 10) for speakers KK and BF.

7
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2.2 Articulation Index Analysis

We computed the long-term spectra for the two speakers over five sentences, for all the

near positions (1, 3, 5, 7, 9, and 11) and for each of the four microphones, MI, M12, EV 985,

and Vought. We examined the long-term speech spectra and the long-term F-15 aircraft

cockpit noise spectra for the four microphones; the noise spectra were computed from the4

noise-only responses of the microphones, which were measured in the previous project (1].

The results of this investigation provided the basis for developing a two-microphone

configuration, which is described in detail in Section 4.

We then performed articulation index analysis using the procedure described in [1]. We

recall that the articulation index (Al) is an objective measure of the intelligibility of speech in

noise. As noise, we considered the ambient noise typical in the F-15 ighter aircraft cockpit

(see Fig. 18 in [11). We computed the Al scores for speakers KK and BF at each of the 3 noise

levels, 85 dB, 107 dB, and 114 dB. For each speaker, we evaluated the 85 dB case twice, once

with normal voice and once with raised voice (6 dB increase in the speech level); for the other

two noise levels, we used raised voice only.

The Al scores are given in Table 1 for speaker KK and in Table 2 for speaker BF. Since

positions 5 and 11 produced substantially lower Al scores than did the other four near

positions, we excluded these two positions in Tables 1 and 2. Notice that we have rank-ordered

the four positions in terms of their Al scores, for each microphone.

We make several observations. First, let us consider the issue of the best position for each

microphone. For speaker KK, we find from Table 1 that the rank-ordering of the four

positions is the same for all four cases (a)-(d), for each of the first three microphones. For

Vought, the two lower ranked positions 3 and 9 are interchanged for (c) and (d) relative to (a)

and (b). Also, position 7 is the best for all four microphones and for all four cases (a)-(d). The



Rank M M12 EV 2 Vouiht

Pos. Score Pos. Score Pos. Score Pos. Score

1 7 0.530 7 0.813 7 0.764 7 0.781
2 9 0.496 3 0.806 3 0.749 1 0.766
3 3 0.486 9 0.782 9 0.738 9 0.698
4 1 0.477 1 0.727 1 0.729 3 0.692

(a) 85 dB noise level and normal voice

1 7 0.720 7 0.900 7 0.891 7 0.866
2 9 0.686 3 0.895 3 0.878 1 0.852
3 3 0.676 9 0.879 9 0.869 9 0.808
4 1 0.667 1 0.859 1 0.867 3 0.800

(b) 85 dB noise level and raised voice

1 7 0.058 7 0.363 7 0.271 7 0.437
2 9 0.043 3 0.348 3 0.258 1 0.407
3 3 0.030 9 0.329 9 0.246 3 0.339
4 1 0.027 1 0.260 1 0.239 9 0.316

(c) 107 dB noise level and raised voice

1 7 0.000 7 0.172 7 0.089 7 0.290
2 9 0.000 3 0.159 3 0.083 1 0.266
3 3 0.000 9 0.153 9 0.080 3 0.204
4 1 0.000 1 0.088 1 0.072 9 0.135

(cannot rank)

(d) 114 dB noise level and raised voice

Table 1. Al scores for the four best positions of the different sensors, for
speaker KK.
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Rank M12 EV 985 VOU~ht

Pos. Score Pos. Score Pos. Score

1 7 0.612 9 0.534 7 0.570
2 3 0.600 7 0.516 1 0.561
3 9 0.587 1 0.490 3 0.539
4 1 0.540 3 0.474 9 0.517

(a) 85 dB noise level and normal voice

1 7 0.758 9 0.708 7 0.694
2 3 0.746 7 0.698 1 0.686
3 9 0.741 1 0.667 3 0.658
4 1 0.702 3 0.654 9 0.648

(b) 85 dB noise level and raised voice

1 7 0.160 9 0.104 7 0.252
2 3 0.151 7 0.080 1 0.238
3 9 0.147 1 0.072 3 0.228
4 1 0.112 3 0.069 9 0.202

(c) 107 dB noise level and raised voice

1 3 0.064 9 0.021 7 0.151
2 7 0.062 1 0.016 1 0.143
3 9 0.048 3 0.014 3 0.135
4 1 0.039 7 0.012 9 0.118.

(d) 114 dB noise level and raised voice

Table 2. Al scores for the four best positions of the different sensors, for
speaker BF.

:..
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second best position is 9 for M1, 3 for M12 and EV 985, and 1 for Vought, again uniformly for

all four cases. Considering speaker BF, we first see from Table 2 that the Al scores are

consistently lower than those given in Table I for speaker KK. (The Al scores for M1 are not

given in Table 2 as they were quite low, especially for cases (c) and (d).) Nonetheless, we see

from Table 2 that the rank ordering of the positions is uniform over all four cases for Vought,

and for cases (a)-(c) for M12 and EV 985. The best position overall is 7 for M12 and Votight

and 9 for EV 985. The second best position overall is 3 for M12 and 1 for Vought. For

EV 985, the AI scores are extremely low for case (d). For cases (a), (b), and (c), the second

best position for EV 985 was 7, and it was only slightly worse than the best position 9. To
examine why position 3 of EV 985 seems to be inferior for BF unlike for KK, we have given in

Table 3 the actual microphone distances we used in the original anechoic chamber

measurements. We find that the difference in EV 985 distance between positions 3 and 9 was

0.5 cm for BF and was only 0.1 cm for KK, with position 3 being farther from the mouth.

Notice also that positions 7 and 9 were equidistant from the mouth for KK, but position 9 was

closer to the mouth for BF. This may explain the discrepancy we mentioned above for

EV 985. In general, position 7 appears to be the best position for all microphones, with the

second choice being either position 3 or position 9 for M12 and EV 985, and position 1 for

Vought. (We raise caution here by noting that positions I and 7, which are directly in front of

the lips, are likely to be very sensitive to puffnoise or breath noise that occurs for plosive

sounds. See Section 6.1 below.)

Second, we consider the sensitivity of the microphones to orientation. We find from

Tables 1 and 2 that in general, positions 3 and 9 produce very similar Al scores for all

microphones, and that positions 1 and 7 produce similar Al scores only for Vought. Of course,

* the differences in microphone distances could have been partly responsible for this result.

Since we always located the microphones as close to the mouth as possible (without the

puffscreen touching the lips for sounds such as [u] in boot), we conclude that the Vought

microphone, located either directly in front of the talker (position 1 or 7) or to the side at a

45-degree angle (position 3 or 9), is not sensitive to slight errors in orientation. On the other

hand, this is true for M12 and EV 985 only when they are located at the 45-degree angle.

11 IM'
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Position BBN AM EV 985 Voutht

(Ml & M12)

KK BF KK BF KK BF

1 0.7 0.7 2.2 2.4 2.4 2.5

3 0.6 0.7 2.4 2.7 2.2 2.9

7 0.5 0.7 2.3 2.4 2.0 2.3

9 0.6 0.8 2.3 2.2 2.5 2.9

Table 3. Distances (in cm) of the three microphones to the center of the mouth
for four near positions, for speakers KK and BF.

Third, we recall the rule of thumb that states that an AI score above 0.4 leads to

intelligible speech. Considering speaker KK, even the best position produces AI scores below

0.4 for the high noise level of 114 dB; for 107 dB, only Vought in position 7 produces an AI

score above 0.4. (These results, of course, provide one motivation for developing multisensor

configurations.)

Fourth, we observe that M12 produces consistently higher Al scores than Vought does for

the low noise level of 85 dB. The nearer location of the microphone array (see Table 3) is

responsible for this result. At higher noise levels, the better noise-cancelling property of the

Vought microphone helps to improve its AT score relative to that of M12.

2.3 Short-Term Spectral Analysis

In this study, we attempted to identify the strengths and weaknesses of each sensor in

each position by observing its response to individual phonemes rather than by observing its

long-term average speech response. In this way, we hoped to develop sensor configurations

12
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and methods of mixing the signals together that would improve the noise immunity for a wide

variety of speech sounds and for different noise conditions. By observing certain gross

characteristics of the output signals from various sensors, we sought to distinguish amongr

different classes of sounds (vowels, fricatives, nasals, etc.). With this information, we believed

that it might be possible to use different signal mixing rules for different classes of sounds in

order to exploit the strengths of the various sensors. We recall that the sensor data used in the

short-term spectral analysis had been collected in a noise-free anechoic chamber.

2.3.1 Gradient Microphones

To determine the strengths and weaknesses of the M12 and Vought microphones in

different positions, we analyzed the spectral responses of these microphones to individual

phonemes for speaker KK. Specifically, we concentrated on the near positions 1, 3, 7, and 9

for the following phoneme categories: vowels, voice bars, nasals, unvoiced fricatives, voiced

fricatives, and plosives. We also studied positions S and 11 for unvoiced fricatives for M12

only. For each microphone and position, we used two criteria to evaluate each short-term

spectrum associated with a particular phoneme. First, we studied the extent to which the

short-term spectra of the microphone and the reference microphone resembled each other; in

general, the greater this resemblance, the more accurate the microphone's response to the

phoneme in question. Second, we examined the signal-to-noise ratio performance by

comparing 'the microphone speech spectrum's level with the long-term cockpit noise

spectrum's level, concentrating on overall noise levels of 107 and 85 dB. From this

investigation, we made the following observations:

1. For a significant number of phonemes, position I for the Vought seemed to be
marginally better than positions 3, 7, and 9. For M12, on the other hand, position
1 tended to be slightly worse than positions 3, 7, and 9. In general, however, for
each microphone and phoneme, differences among the various positions were not
usually dramatic, and few indications of any one position's superiority for a
particular phoneme became evident for any of the phonemes we studied. Since
there seemed to be no strong phoneme dependence apparent in the assessment of .

13



one microphone position relative to the others, we ruled out the possibility of
performing a variable, phoneme-dependent mix of the microphone signals in a
single-input multisensor system.

2. Vowels were fairly strong relative to the noise, while voice bars and nasals were
very weak. Fricatives and plosives fell between these two extremes. Because the
sound source for voice bars (radiation from throat surface) and nasals (radiation
from nostrils) is not in the near field of a gradient microphone, the amplitudes of
the transduced signal for these sounds are expected to be substantially smaller (in
relation to an adjacent vowel) for M12 or Vought than for the reference
microphone. We found this result to be true in our investigation (see also Section
4.6 in [11). For improved transduction of voice bars and nasals, we therefore
suggest the use of a gradient microphone with a second sensor, e.g., an
accelerometer (see the next subsection for more discussion).

A 3. Mli's speech response was usually stronger relative to its noise response at

higher frequencies (above 2 kllz) than Vought's, while the reverse was true at low
frequencies. This observation is consistent with the results of our long-term
spectral analysis (see Section 4).

4. Because more air tends to be expelled from the sides of the mouth during the
production of fricatives, we decided to investigate M12's "side positions" 5 and 11
for fricatives to determine if these positions were more useful for fricatives than
the other near positions. In our comparisons, position 5 appeared to be better
than positions 1 and 11 but worse than positions 3, 7, and 9. Therefore, no
advantage for fricatives was gained by transducing them with a microphone in a
"side position."

We also analyzed speaker BF's short-term spectra for Vought and M12 for several

phonemes. We discovered that the differences between positions for a given microphone and

phoneme were even less pronounced than they were for KK; position 1 for Vought showed no

noticeable superiority over the other positions, and position 1 for M12 was not noticeably
inferior to the other positions. Therefore, we chose to base our decisions concerning the "best"

position for each microphone on the articulation index scores (see Section 2.2) and the results

of informal listening tests (Section 6.1).

14
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2.3.2 Accelerometer

In our study of short-term spectra for the accelerometer, our goal was to determine how

well different phonemes are transduced by the accelerometer attached to the throat in position

10, as well as to search for features that could be useful in a feature-based parallel-input

speech recognition system; recall from Section 2.1 that we had already chosen position 10 (or

its symmetric position 3) as the "best" position for the throat accelerometer through informal

listening tests. In addition, we briefly investigated the feasibility of using the nasal

accelerometer signal (position 8) for the transduction of nasal sounds; this investigation was

particularly important because, as mentioned above, the gradient microphones do not

transduce nasals well.

Because we expected the throat accelerometer to provide no useful information for the

unvoiced phonemes, we concentrated our attention on the voiced phoneme classes: voiced

fricatives, vowels, voiced plosives (voice bars), and nasals. To determine how well the

accelerometer transduces these phonemes, we compared its short-term spectra with the short-

-'term spectra for the same phonemes derived from a reference microphone placed one foot

from the talker. For a given phoneme, the more closely the spectra matched, the better we

assumed to be the accelerometer's ability to transduce that particular phoneme. We note that

all data used in this study was recorded in the quiet to facilitate comparisons with the

reference microphone. We expected that the accelerometer's relative insensitivity to acoustic

noise would keep its spectral shape fairly constant, regardless of the level of ambient noise.

Because of the sharp lowpass roll-off inherent in the accelerometer signal, we assumed

that the kind of spectral shaping described in Section 3, which emphasizes the high frequencies

relative to the low frequencies, was applied to each accelerometer spectrum so that its overall

shape did not differ too much from the shape of the reference microphone spectrum for the

same phoneme. A discussion of our findings in this study follows.

The spectrum of a typical voiced fricative [z] measured at the reference microphone,

plotted in Fig. 2, shows regularly spaced harmonic peaks for frequencies below approximately
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~FIG. 2. Spectrum of [z] transduced by the reference microphone at I foot.
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FIG. 3. Spectrum of [z] transduced by thM1c2 roee in position 7. .
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700 Hz followed by a gradual upward slope with irregularly spaced peaks at higher

frequencies. The low-frequency part of the spectrum indicates the presence of voicing due to

periodic vibration of the vocal cords. The high-frequency part of the spectrum is

characteristic of a shaped noise source, in this case turbulence noise created by forcing air

through a constriction in the vocal tract. The spectrum of this same phoneme as measured by

the BBN first-order gradient microphone M12 in position 7, plotted in Fig. 3; shows that the

low-frequency part does not exhibit periodic peaks, but the high-frequency part closely follows

the shape of the reference microphone-spectrum. However, the spectrum of this sound

measured using an accelerometer in position 10, plotted in Fig. 4, shows the regular low-

frequency peaks very clearly; the high-frequency part of the spectrum is nearly flat. These

results can be explained as follows. Because the constriction in the vocal tract allows very little

air past it, most of the vibrating air (due to voicing) is trapped behind the constriction.

Therefore, the turbulence noise is the major component of the signal that passes the lips. The

voiced part of the sound that a listener hears results from the vocal cords' vibration being

transmitted through the skin of the throat and then radiated into the air. The accelerometer, --

as expected, transduced the voicing information well but was not as sensitive to the frication

part. M12, on the other hand, transduced the frication well, but was not as sensitive to the

voicing part, as the source in this case is not in the near field of M12. The reference pressure

microphone, as expected, transduced both the voiced and the fricated parts well. These results

also indicate that the single-input two-sensor configuration consisting of the accelerometer and

M12 will transduce the voiced fricatives well, since the spectrum of the two-sensor signal will

contain the low-frequency periodic peaks of the accelerometer signal and the high-frequency

spectral slope of the M12 signal.

During informal listening tests of the accelerometer signal (see Section 2.1), we observed

problems with transducing certain vowel sounds when the accelerometer was used in position

10, which is generally the most intelligible position. When listening to the accelerometer

output from this position, the phoneme [u] (as in "bOOt") was consistently confused with [i]

(as in "bEAt"). It is easy to see from plots of the smoothed spectra of the accelerometer signal

and the reference microphone signal why this confusion occurred. (We used the linear
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- -,N. prediction or LPC method for smoothing the spectra.) For the phoneme [i], Fig. 5 shows that

the reference spectrum has two formant peaks below 2500 Hz, one at approximately 300 Hz

* and one near 2000 Hz. The accelerometer spectrum for this sound shows the same peaks. For

the phoneme [u], Fig. 6 shows that the reference spectrum has three peaks below 2500 Hz,

approximately at the frequencies 300 Hz, 1000 Hz, and 2200 Hz. However, in the

accelerometer spectrum, the formant peak near 1000 Hz has dropped out, leaving a spectrum

that looks very similar to the spectrum of [i]. This explains the [u] to [i] confusion mentioned

above. We believe that the loss of the second formant in the accelerometer signal for [u] was

caused by the following mechanism. The formant peaks in the speech spectrum are the result

of resonances within cavities formed by the articulators (tongue, lips, teeth, and roof of the

mouth) along the vocal tract. The second formant in the phoneme [u] is the result of a

resonance in the front cavity formed between the tongue and the lips. In the phoneme [i], this

cavity is opened up at the lip end, and hence this resonance does not occur. Normally, when

we listen to speech, we hear it as it radiates from the lips. By attaching the accelerometer to

the side of the throat, we can effectively listen to the speech as it would sound at the vocal cord

end of the vocal tract. Because of the constriction formed by placing the middle of the tongue

near the roof of the mouth for these sounds, the front cavity resonances are decoupled from

the rear cavity, and thus front cavity resonances are absent or severely attenuated in the

accelerometer signal. This effect can also be observed for other phonemes for which the front

* and back cavities are decoupled or loosely coupled. To determine if, for any other

accelerometer positions, the vowel formants are picked up more clearly, we briefly

investigated the short-term spectra for vowels transduced in positions other than 10. We

found, however, that the other accelerometer positions were no better than position 10 for
vowels.

We note that the missing information in the accelerometer signal is unretrievable. This
i'. underscores the importance of using the accelerometer signal together with another sensor

signal (e.g., gradient microphone signal).

For voice bars, we found that the spectrum of an accelerometer in position 10 (or position
3) matched the spectrum of the reference microphone signal quite well at low frequencies.
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FIG. 5. Comparison of LPC-smoothed spectra for reference microphone and
accelerometer for vowel [i] in "beat".
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FIG. 6. Comparison of LPC-smoothed spectra for reference microphone and
accelerometer for the vowel [u] in "boot"

201



Since most of the energy for voice bars is in frequencies lower than 1 kHz, this suggests that

the single-input two-sensor system involving the accelerometer and a gradient microphone will

transduce the voice bars well.

In the process of analyzing the short-term spectra for speaker KK, we observed several

spectral features that appeared promising for use in the parallel-input multisensor system.

Most notably, a sharp resonant peak was observed in the LPC-smoothed spectra of the throat

accelerometer signal for voice bars, voiced fricatives, and nasals, roughly in the range of 1 to 2

kHz; the frequency location of this peak seemed to be phoneme-dependent. We then studied

the short-term LPC-smoothed spectra of the same sounds for female speaker BF, for

accelerometer positions 3 and 10. Some of the spectra, such as for the voiced fricatives [zh]

and [v], yielded a fairly strong peak; but for some other phonemes, particularly voice bars, the

peak was either far less pronounced or nonexistent. In other words, for speaker BF this peak

demonstrated far less consistent behavior than it did for KK.

The use of the accelerometer signal for accurate pitch and voicing extraction has been

demonstrated recently as part of another government-sponsored contract at BBN [4]. Position

7 (just below the glottis) was used in that project. Accurate pitch and only 1% voicing error

were reported for a database of 50 sentences from 3 males and 3 females. We performed some

limited testing involving only a few sentences of speech transduced by the accelerometer in

position 10 and observed, through visual examination of speech waveforms and extracted pitch

data, approximately the same 1% voicing error and accurate pitch.

For the nasal accelerometer (position 8), we found that the spectrum of its output signal

closely matched the spectrum of the reference microphone for nasals and nasalized sounds

except for the high-frequency roll-off characteristic of the accelerometer signal. For other

sounds, the output signal level of this accelerometer was very low. Because the nasal

accelek., leter transduces nasals well, we concluded that including it in a multisensor system

would probably help in the human and/or machine recognition of nasal sounds.

We studied briefly the feasibility of a nasality detector based on the frame energy of the

nasal accelerometer signal. We developed a simple algorithm that compares the frame energy
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with an adaptive threshold; if the threshold is exceeded, the frame in question is declared nasal

or nasalized. We conducted only limited tests, and our nasality detection algorithm seemed to

perform quite well, indicating the feasibility of this approach.

In conclusion, we found that the throat accelerometer signal would be very helpful in

detecting the presence of voiced sounds. Also, it showed promise for actually discriminating

among some voiced sounds, although it demonstrated some weaknesses as well, as shown by

the drop-out of the second formant peak in [u]. Short-term spectral analysis of the nasal

4 accelerometer signal indicated that it is useful for the transduction of nasal sounds. As an

important reminder, we note that the properties of the accelerometer signal will continue to

hold even in high noise since the accelerometer is essentially insensitive to acoustic noise.
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3. SPECTRAL SHAPING OF ACCELEROMETER SIGNAL

As noted in [1], the accelerometer signal is severely attenuated at high frequencies

because of skin conduction losses. However, results from informal listening tests on the

accelerometer signal processed through a variable-cutoff highpass filter showed that it

contains useful information (intelligible speech), though low in level, even at frequencies above

3 kHz. Spectral analysis of the accelerometer signal also indicated the existence of high-

frequency signal amplitudes larger than the accelerometer's noise floor, for voiced sounds.

Encouraged by these results, we investigated a method of spectrally shaping the accelerometer

signal; this method emphasizes the high-frequency amplitudes relative to the low-frequency

amplitudes, to enhance the low-level high-frequency information and to reduce the unnatural

quality (e.g., boominess) due to the exaggerated low-frequency amplitudes. The spectrally
shaped accelerometer signal would then be combined with a gradient microphone's signal, in

an attempt to improve the single-input two-sensor system developed in the previous project [1]

and mentioned above in Section 1.1.

We determined for two speakers, one male (AD) and one female (CH), the spectral

shaping function through informal listening tests on the accelerometer signal processed using

an adjustable one-third octave filterbank. The accelerometer was placed in position 10 for .

both speakers (refer to Fig. 1). The spectra of the resulting shaping functions are shown in

Fig. 7. As shown in the figure, the shaping we chose for either speaker provides a sharp

highpass at about 800 Hz, a 5 dB/octave boost over 800-2800 Hz, a flat response over 2.8-4.7

kHz, and a sharp lowpass at 4.7 kHz. The only appreciable difference in the spectral shapes .. .'

for the two speakers occurred at frequencies below I kHz, where CH's signal was attenuated

more than AD's. The shaped version of speaker KK's accelerometer signal recorded in 107 dB

SPL cockpit noise contained a fair amount of high-frequency noise; the noise level was reduced

appreciably when we lowpass filtered the shaped signal at about 3.2 kHz. In subsequent tests,

we used the shaper-lowpass filter cascade. Speaker AD's long-term spectra of speech

transduced by the accelerometer in position 10 both with and without the "optimal" shaping

are shown in Fig. 8.
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Comparison of this plot with Fig. 19 of the multisensor project final report [1] shows that

the "shaped" accelerometer signal spectrum bears a much greater resemblance to a pressure

microphone signal spectrum than does the "unshaped" spectrum. Thus, one would expect the

"shaped" accelerometer signal to sound more "natural" than the "unshaped" signal.

"4.To evaluate the effect of the above spectral shaping method, we performed informal

speech quality tests on the accelerometer signal and on the two-sensor signal (we used the first-

order gradient microphone M12 and speaker KK's data), with and without spectral shaping

and in 100 dB, 107 dB, and 114 dB levels of cockpit noise. At all three noise levels, the quality

of the accelerometer signal alone was improved significantly by shaping; the shaping function

found for speaker AD was used. The two-sensor signal with shaping showed a slight but

audible improvement in quality over the unshaped case.
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4. A TWO-MICROPHONE CONFIGURATION

As part of our long-term spectral analysis work, we compared the long-term speech

spectrum with the long-term cockpit noise spectrum for each of our three gradient

microphones. This study showed that Vought provides a higher signal-to-noise ratio (SNR) at

low frequencies than M12 and EV 985, and that both M12 and EV 985 provide a higher SNR

at high frequencies than Vought, with the high-frequency SNR being significantly higher for

M12 than for EV 985. Fig. 9(a) shows the long-term speech and noise spectra for Vought

located in front of the lips (position 7, see Fig. 1), and Fig. 9(b) shows the corresponding

spectra for M12 located 45 degrees to one side of the mouth (position 3). (The speech spectra

shown are peak speech spectra since we had added 12 dB to the RMS spectra, and the noise

spectra correspond to the responses of the microphones to cockpit noise at about 102 dB SPL.)

Figs. 9(a) and 9(b) show clearly the superiority (in terms of the SNR performance) of Vought ,"

at low frequencies and the superiority of M12 at high frequencies. The reason for the superior

high-frequency response of M12 is that we located the microphone array substantially closer to

the mouth than we could locate the bulkier Vought (see Table 3).

More important, the above result provided the basis for developing a two-microphone

* configuration in which a lowpass filtered Vought microphone signal is combined with a

highpass filtered and amplitude adjusted M12 signal, with the same cutoff frequencies for the

two filters. We performed the amplitude adjustment to make the high-frequency energy of the

M12 signal equal to that of the Vought signal, which ensured the proper energy balance in the

spectrum. We determined the value of the cutoff frequency, using an exhaustive procedure, as

that which maximized the overall SNR (or alternatively the overall articulation index) of the

two-microphone configuration. Fig. 10(b) shows the long-term speech and noise spectra for

the two-microphone signal, with the cutoff frequency indicated by the dashed vertical line.

For comparison, the spectra for Vought are shown in Fig. 10(a). The overall SNR of the two-

microphone configuration was increased in this example by about 2.5 dB as compared to the

Vought microphone alone. The articulation index score (which is a measure of speech

intelligibility) was also increased significantly.
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Fig. 11 shows the SNR of the two-microphone signal as a function of the cutoff frequency,

with the optimal cutoff frequency indicated by the dashed vertical line. Notice from the figure

that the value of the SNR at the cutoff frequency of 0 Hz is the SNR for M12 and the value at 5

kHz is the SNR for Vought. In computing the SNR, we assumed raised voice; in other words,

we added 6 dB to the RMS spectra of speech recorded in the quiet background. The SNR plot

shown in the figure exhibits a rather broad maximum, indicating a negligible sensitivity of the

SNR to changes in the cutoff frequency from its optimal value; this property explains why we

obtained, in informal listening tests, good speech quality and intelligibility, using the same
cutoff frequency for different speakers (see Section 6.2). To improve the SNR of the two-

microphone signal further, we incorporated the amplitude adjustment step mentioned in the

preceding paragraph within the process of optimizing the cutoff frequency. With this

'IV modification, the SNR of the two-microphone signal was increased to 3.0 dB, as compared to

-3.1 dB for M12 and -0.7 dB for Vought; all SNR's were computed for raised voice and 102 dB

noise.

The two-microphone system just described is a desirable alternative to the earlier two-

sensor system since- the accelerometer used in the latter can pick up unwanted vibrations

caused, for example, by the movement of the talker.
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FIG. 11. Signal-to-noise ratio of the two-microphone signal plotted as a
function of the cutoff frequency.
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- 5. ADDITIONAL MULTISENSOR CONFIGURATIONS

Results from short-term spectral analysis of the sound-field data that we measured in the

previous project indicated that the spectral amplitudes of nasal murmur (in relation to an

adjacent vowel) were substantially weaker for all three gradient microphones we used than for

a pressure microphone [1]. Therefore, we investigated the use of a nasal microphone as part of

a multisensor configuration. Using the EV 985 for this purpose, we found that the best way of

locating it is to place it directly under one nostril and not use a puffscreen, which allows the

microphone to be very close to the sound source. Initial experiments in simulated noise yielded

two results: 1) It is necessary to highpass filter the nasal microphone signal at about 500 Hz

prior to combining with a lip microphone signal to reduce the level of the perceived noise; and

2) the (M12, EV 985) combination, with EV 985 being the nasal microphone, produced a

slight improvement in the transduction of nasal sounds over M12 alone.

The results presented above suggested the following configurations involving three or

four sensors: 1) (Vought, M12, and EV 985); 2) (accelerometer, Vought, M12, and EV 985);

and 3) (accelerometer, Vought, and M12). In cases (1) and (2), EV 985 was included as a

nasal microphone. In cases (2) and (3), the Vought signal had to be bandpass filtered before

combining with the other sensor signals so that the accelerometer contributed information

primarily to the low band; the Vought, to the middle band; and M12, to the high band.
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6. FORMAL SUBJECTIVE TESTING IN NOISE

To compare the performance of the various multisensor configurations in broad-band

noise, we simulated F-15 fighter aircraft cockpit noise at 95 dB and 115 dB SPL, and

conducted a two-speaker Diagnostic Rhyme Test (DRT) [5] for speech intelligibility evaluation

and a 10-point rating test for speech quality evaluation [1]. The cockpit noise was simulated in

a reverberant room to ensure a stable, diffuse field, using the procedure described in [1].

6.1 Sensor Positions and Configurations

For each of the sensors, we determined the best position based in the results from

articulation index analysis, short-term spectral analysis, and puffnoise study in which we

evaluated, by listening, the level of the puffnoise picked up by a microphone with and without

a puffscreen. Positions directly in front of the lips (positions 1 and 7; see Fig. 1) often led to

objectionable levels of puffnoise, even though they produced high articulation index scores.

Brief tests indicated that the physical placement of the three microphones in front of a talker

would not affect detrimentally, because of interference, any of the microphone signals in the

quiet or in noise. The sensor positions we chose are as follows: one side of the throat just

above the Adam's apple (position 10) for accelerometer; 45 degrees to one side of the mouth

(position 3) for M12; 45 degrees to the other side of the mouth for Vought; directly under one

nostril for EV 985, as we were using this exclusively as a nasal microphone. Because the level
of puffnoise was objectionable for M12 and Vought without puffscreens, we decided to use

puffscreens for these two microphones; however, for both microphones we made the

puffscreens as thin as possible to allow the closest possible placement to the mouth. As we

*' noted in Section 5, EV 985 should be used without a puffscreen to allow closer placement to

*, the nose for improved transduction of nasals.

From the results presented in Sections 3-5, we chose to evaluate the following seven

multisensor configurations, involving four different sensors:
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CI) Accelerometer and Vought I
C2) Accelerometer and M12
C3) Accelerometer with shaping and M12

C4) Vought and M12

CS) Accelerometer, Vought, and M12
C6) Vought, M12, and EV 985
C7) Accelerometer, Vought, M12, and EV 985.

For mounting the multiple microphones, we developed a headpiece from a face shield by

attaching metal rods that are adjustable both vertically and horizontally.

6,2 Multichannel Recording of Test Data

To guarantee identical speaking conditions for the seven multisensor systems, we

mounted all four sensors simultaneously, recorded the sensor signals on a multichannel tape

recorder, and combined afterwards the individual sensor signals to obtain the multisensor test

data. We used two speakers, one male (RS) and one female (CH). Three ambient conditions

were considered: quiet or no noise, 95 dB (cockpit) noise, and 115 dB noise. As test speech

materials, we used the following items (refer to Appendix A for a listing of items 2-4):

1. The standard 232-word DRT material, with a different word list used for each

speaker-noise condition [5]. A Radio Shack TRS-80 Model 100 personal
computer was used to prompt each speaker for a given DRT list. Six lists, one for

each speaker-ambient noise combination, were scrolled up the display screen, one

DRT pair at a time, at a rate of one word pair every 1.3 seconds.

2. The same six sentences included in the multisensor project's database, to be used

for subjective speech quality evaluation.

3. The 20-word TI vocabulary, containing the ten digits and ten command words, to
-a'. be used in tests with a commercial speech recognition unit. For training data,
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each speaker repeated the list 10 times, with a four-second interval between

words. The same list was then repeated 20 times with two-second word spacing
for use as test data.

4. A list of 44 minimal pair words, to be used in the study of the parallel-input
4. system. The list was repeated 20 times, with roughly 1.5 seconds between words.

In order to reduce the amount of data taken in the 115 dB noise, this section of
data was omitted for that noise condition; we could simulate the data for the 115
dB noise environment digitally, using the minimal pair data taken in the quiet
and using the recording of the noise alone.

The minimal pair words we chose are listed in Table 4 under seven categories that reflect

one way we might use them in our investigation of the parallel-input multisensor system.
From Table 4, we note that the category vowels contains high and low vowels and front and

back vowels. For the category place for stops. we have two sets of words with [b, d, g] in initial
position, one set with [b, d, g] in final position, one set with [p, t, k] in initial position, and one

set with [p, t, k] in final position. In the place for nasals category, we have two sets of words
* with [in, n] in initial position and one set with [in, n, ng] in final position. The category place

* for fricatives has one set of words with Is, f] in initial position, one set with Is, f] in final
position, and one set with Is, sh] in initial position. For the voiced-voiceless category, we have

words with It, d] in initial position, It, d] in final position, [p, b] in initial position, [k, g] in
initial position, Is, z] in final position, and If, v] in final position. For the nasal-nonnasal

category we have [n, d, 1] in initial position for two sets of words; also, we have words with

each of the three sound pairs in the final position: ([m, b], In, d], and [ng, g]. Finally, the

category sonorants contains one example for each of six sonorants (sounds with no bursts or
noise) in initial position. To keep the total number of distinct words reasonably small (44 in

our case), we chose the words in such a way that one word may appear under more than one
V category. For example, the word 'net' appears under the categories: place for nasals, nasal-

nonnasal, and sonorants.
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Vowels
heed, hid, head, had, hod, hud, hood

Place for Stops
bet, debt, get, bode, dode, goad,
sog, sod, sob, dote, dope, doak,
toad, code, pode

Place for Nasals
met, net, mode, node, sawn, psalm, song

Place for Fricatives
leaf, lease, sod, shod, sin, fin

Voiced-Voiceless
bet, bed, pet, bet, goad, code,
dode, toad, dose, doze, leaf, leave

Nasal-Nonnasal
met, bet, mode, bode, net, debt, let,
song, sog, sawn, sod, psalm, sob, node,
dode, load

Sonorants wet, yet, let, ret, met, net.

Table 4. Minimal pair words grouped under seven categories.
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For combining the sensor signals in each of the seven multisensor systems given in Section

6.1, the filter cutoff frequencies and the amplitude adjustments for individual sensor signals
were "optimized" subjectively through informal listening tests involving three listeners; we

considered the two cockpit noise conditions only. For each sensor signal, we used about the

same filter cutoff frequency for both speakers and both noise conditions; the required

amplitude adjustments, however, varied across speakers and noise conditions.

6' 3 Screening Evaluation

We compared the seven multisensor systems through informal listening tests and limited

DRT tests, scoring only half the DRT words and with only three listeners. From this

evaluation, we made the following observations: 1) Nasal sounds were transduced well by the

two-sensor configurations CI, C2, and C3, all involving the accelerometer; 2) the benefit

provided by the nasal microphone EV 98S in configuration C7 over CS was only marginal; 3)
the effect of including the nasal microphone in C6 (as compared to C4) was mixed in that

perception of nasal sounds was slightly improved and perception of sounds [g, b, v, d] was

degraded; and 4) the improvement provided by C5 over CI or C4 was only slight. Based on

these results and our interest to keep the number of sensors in a configuration small, we.

decided to include only the four two-sensor configurations C1-C4 for formal DRT and quality

tests. For comparison purposes, we included also the three individual sensor cases: shaped

accelerometer, Vought, and M12.

6.4 Generation and Scoring of Test Tapes

We generated DRT test tapes for the above-mentioned seven sensor systems. The test
conditions for each sensor system included the two speakers and the two cockpit noise

conditions, 95 dB and 115 dB. The tapes were scored at RADC, Hanscom Air Force Base, MA, __

using a panel of 12 trained listeners. For speech quality tests, we dubbed the six-sentence sets
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twice more to obtain a total of 84 sets (= 28 conditions x 3 repetitions); dubbing was done to

obtain three quality judgments per set from each listener. The test tapes contained a

randomized order of these 84 sets. We used six experienced listeners, who rated the overall

quality of each six-sentence set on a 10-point scale, with 1 being the worst quality and 10 being

the best quality.

6.5 Speech Intelligibility Test Results

6.5.1 Overall DRT Scores

Table 5 gives the single-speaker DRT scores, the standard errors of listener means (given

within parentheses), and two-speaker average DRT scores, for the various sensor and noise

combinations. For convenience, we use the abbreviation ACC to denote the accelerometer

without spectral shaping and ACC* to denote the accelerometer with spectral shaping; also,

we use the notation (A,B) to denote the two-sensor configuration consisting of the sensors A

and B, with A providing primarily the low-frequency information and B, the high-frequency

information. First, let us consider the two-speaker average DRT scores. Comparing the two

gradient microphones M12 and Vought, we see from Table 5 that in 95 dB noise M12

produced a slightly higher DRT score; in 115 dB noise, however, Vought produced a

noticeably higher DRT score. Comparing (ACC, M12) with (ACC*, M12), we see from the

table that spectral shaping of the accelerometer lowered the DRT score in both noise levels.

Each of the two-sensor configurations (ACC, M12) and (ACC, Vought) produced a substantial

improvement in the DRT score over the respective gradient microphone in 115 dB noise, and

produced essentially the same DRT score in 95 dB noise; this result is in agreement with the

result reported in our multisensor project final report [1]. Notice that the two-sensor

configurations involving the accelerometer produced huge improvements in the DRT score

over the accelerometer alone, even in 115 dB noise. The two-microphone configuration

(Vought, M12) produced good improvements in the DRT score over Vought and M12 in 115

dB noise, and produced essentially the same DRT score in 95 dB noise. Among the two-sensor
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SENSOR 95 dB 115 dB

RS CH AVE. RS CH AVE.
81.3 82.8 82.0 74.9 83.6 79.2

ACC*
(1.2) (1.2) (0.83) (2.1) (1.3) (1.63)

M12 96.7 94.3 95.5 85.2 85.2 85.2

(0.8) (0.9) (0.64) (1.5) (2.1) (1.24)

96.6 91.8 94.2 87.6 88.7 88.1
(VOUGHT)

(0.7) (0.8) (0.81) (0.6) (0.7) (0.45)

96.9 92.6 94.7 90.6 94.1 92.4
(0.5) (1.1) (0.81) (0.7) (0.6) (0.63)

93.9 94.0 93.9 90.5 92.6 91.5

(0.4) (0.5) (0.30) (1.2) (0.5) (0.70)

96.1 93.6 94.9 90.1 92.6 91.3S(ACC, VOUGHT) '
( (0.9) (0.8) (0.67) (1.4) (0.7) (0.82)

( 96.7 92.8 94.8 91.2 90.2 90.7(VOUGHT, M12)

(0.6) (0.5) (0.63) (0.7) (1.0) (0.61)j

Table 5. Overall DRT scores for the seven sensor systems, two speakers, and
two noise conditions. Numbers given within parentheses are standard
errors of listener means.
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configurations, (ACC, M12) seems to have the best overall intelligibility, although the DRT

score differences among them are not large.

To determine the itatistical significance of the difference in the two-speaker DRT scores,

we used the standard two-tailed t test as follows. We present the test for a general case so that

it can be used for comparing DRT scores and for comparing speech quality scores given below

in Section 6.6. Suppose MI and M2 are mean test scores over N judgments for the two sensor

systems being compared, and VI and V2 are the corresponding unbiased estimates of

variances. (Unbiased estimate means that we divide the sum of the squares of the deviations '--

from the mean by N-I instead of N.) The parameter t is then given by (MI-M2)/E, where E is

the square root of (VI+V2)/N. The degrees of freedom df is 2N-2. The level P of statistical

significance of the difference MI-M2 is determined by referring to a t distribution table with

the computed values of t and df. We considered a difference to be statistically significant if P <

0.05.

* For the two-speaker DRT scores, the parameter t is again (MI-M2)/E, where E is now the

*. square root of the sum of the squares of the two standard errors SEI and SE2; df is 30 since

*. N=16 (2 speakers x 8 listeners). We investigated the statistical significance for all possible

pairwise comparisons of the seven sensor systems given in Table 5. For the 95 dB case,

comparisons of ACC* with each of the other six sensor systems are all extremely significant (P

< 0.000001); the case (ACC*, M12) vs. M12 is significant at P < 0.05; all other cases are not .4.

significant. For the 115 dB case, only the comparisons between any two two-sensor systems

are not significant. In particular, comparisons involving a two-sensor system and one of the

constituent single sensors are all highly significant (P < 0.002 or better).

Next, we consider the individual-speaker DRT scores given in Table 5. Comparing the

4 DRT scores for the two speakers, we see that for each of the two microphones M12 and Vought
4.

the DRT score was higher for RS than for CH in 95 dB noise; in 115 dB noise, however, the

DRT score for CH was equal to or slightly higher than the DRT score for RS. For the

accelerometer alone, the DRT score in 115 dB noise was substantially higher for CH than for

RS; the difference between their scores in 95 dB noise was only slight. In 115 dB noise, we
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used a higher relative gain for the accelerometer signal for CH than for RS in the two-sensor

configurations. As a result, the accelerometer's contribution to the two-sensor systems in 115

dB noise was higher for CH than for RS. For example, while the DRT score for (ACC, M12) 6

was 4.3 points lower for CH than for RS in 95 dB noise, in 115 dB noise it was, in fact, 3.5

points higher for CH than for RS. Finally, for the two-microphone configuration (Vought,

M12), the difference in the DRT score between RS and CH decreased from 3.9 points in 95 dB

noise to 1.0 point in 115 dB noise, with the score for RS being higher in both cases.

The DRT score for M12 in the quiet was 96.9 (SE=1.0) for RS and 98.3 (SE=0.7) for CH.

From a comparison of these two scores with the scores for the speakers used in the standard

DRT tests [5], we found that our two speakers fell somewhere in the upper end of the DRT

speakers, with the latter being ordered in terms of their DRT scores.

6.5.2 Attribute DRT Scores

The DRT words allow the speech intelligibility to be evaluated, for diagnostic purposes,

for each of the six attributes: voicing, nasality, sustention, sibilation, graveness, and

compactness [5]. Each of the rhyming pairs associated with the voicing attribute contains one

word with an initial voiced consonant (e.g., bean) and another with an initial unvoiced

consonant (e.g., peen). Nasality involves discrimination between nasal and non-nasal sounds

(e.g., meat vs. beat); sustention involves discrimination between stop sounds and non-stop

sounds (e.g., bee vs. vee); sibilation involves discrimination between sounds with intense high-

frequency energy and sounds with low high-frequency energy (e.g., zee vs. thee); graveness

involves discrimination between labial and non-labial sounds (e.g., bid vs. did); compactness

involves discrimination between compact sounds and non-compact sounds (e.g., key vs. tea). _-__

The DRT results at the attribute level may have implications concerning performance in

isolated-word recognition.

Since the DRT scores showed a larger variation c'ver the sensors in 115 dB noise than in

95 dB noise, we present below the attribute DRT scores only for the 115 dB case. Also, since

the results were similar for the two speakers, we present the results for speaker CH only.
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Table 6 gives the attribute DRT scores for ACC*, M12, (ACC, M12), and (ACC*, M12). For

each attribute, the table gives the combined score and the scores for each of two cases; the two

cases are frictional and non-frictional for voicing; grave (labial) and acute for nasality; and

voiced and unvoiced for all other attributes. Comparing (ACC, M12) with M12, we find from

Table 6 that the addition of the accelerometer to M12 improved voicing by 13.2 points,

sustention by 19.5 points, and graveness by 14.1 points. Comparing (ACC, M12) with (ACC*,

M12), we see that the major effect of accelerometer spectral shaping was a reduction of the

S graveness score by 10.2 points. It is interesting to point out that although the overall DRT

scores were only slightly different for M12 and ACC* (85.2 vs. 83.6), the attribute DRT scores

were quite different (a 14.7 point difference in voicing, a 13.2 point difference in sustention, a

17.2 point difference in sibilation, and a 14.8 point difference in graveness).

Table 7 gives the attribute DRT scores for ACC*, Vought, and (ACC, Vought). The

addition of ACC to Vought in the two-sensor configuration primarily improved sustention

(14.8 points) and compactness (3.9 points).

Table 8 gives the attribute DRT scores for Vought, M12, and (Vought, M12). The

addition of Vought to M12 in the two-microphone configuration improved voicing by 13.2

points, sustention by 7 points, and graveness by 4.7 points.

6.6 Speech Quality Test Results

Table 9 gives the single-speaker mean speech quality ratings and the two-speaker average

ratings for the various test conditions; for each test condition, we averaged the available 18

rating scores (6 subjects x 3 judgments). From the table, we see that the addition of the

accelerometer in each of the two-sensor configurations (ACC, M12) and (ACC, Vought)

. improved the mean speech quality rating modestly in both noise conditions. Comparing

(ACC, M12) with (ACC*, M12), we find that spectral shaping lowered the mean rating in both

noise levels; the decrease in the rating was more for CH than for RS. The two-microphone
configuration produced a slight speech quality improvement over the two constituent .
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SENSOR
ATTRIBUTE ACC* M12 (ACC, M12) (ACC*, M12)i

VOICING 96.9 85.2 98.4 97.7

Frictional 96.9 71.9 98.4 9&4

Non-Frictional 96.9 9&4 98.4 96.9 "

NASALITY 1100.0 9&4 992 99.2
Grave 100.0 98A 100.0 i100.0

I,.

Acute 100.0 9&4 98.4 9&4

SUSTENTION 89.8 76.6 96.1 96.1

Voiced 95.3 60.9 95.3 1 95.3
Unvoiced 84.4 92.2 96.9 96.9

SIBILATION 76.6 93.8 96.9 97.7
Voiced 90.6 89.1 95.3 i 100.0

Unvoiced 62.5 9&4 98.4 95.3

GRAVENESS 63.3 78. 922 82.0
Voiced 95-3 81.3 96.9 84.4

Unvoiced 31-3 75.0 875 79.7

COMPACTNESS 75.0 7&9 82.0 828
Voiced 891. 81.3 875 93.8
Unvoiced 60.9 76.6 76.6 1 71.9

OVERALL DRT 83.6 85.2 94-1 9Z6

Table 6. Attribute DRT scores for ACC*, M12, (ACC, M12), and (.CC*, M 2)
in 115 dB noise, for speaker CH.
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_____T SENSOR
ATTRIBUTE ACC* VOUGHT (ACC, VOUGHT)

VOICING 96.9 96.1 97.7

Frictional 96.9 98.4 98.4
Non-Frictional 96.9 93.8 96.9

NASALITY 100.0 100.0 98.4
Crave 100.0 100.0 96.9
Acute 100.0 100.0 100.0

SUSTENTION 89.8 79.7 94.5
Voiced 953 781 95.3
Unvoiced 84.4 81.3 93.8

SIBILATION 76.6 96.9 992

Voiced 90.6 96.9 100.0
Unvoiced 625 96.9 98.4

GRAVENESS 63.3 80.5 82.8
Voiced 95.3 92.2 95.3
Unvoiced 31.3 68.8 70.3

4 COMPACTNESS 75.0 78.9 82.8
Voiced 89.1 87.5 87.5
Unvoiced 60.9 70.3 78.1

OVERALL DRT 83.6 8&7 92.6

*Table 7. Attribute DRT scores for ACC*, Vought, and (ACC, Vought) in 115 dB
noise, for speaker CH.
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SENSOR ." .

ATTRIBUTE VOUGHT M12 (VOUGHT, M12)

VOICING 96.1 85.2 98.4
Frictional 98.4 71.9 96.9
Non-Frictional 93.8 98.4 100.0

NASALITY 100.0 98.4 100.0
Grave 100.0 98.4 100.0
Acute 100.0 98.4 100.0

SUSTENTION 79.7 76.6 83.6
Voiced 78.1 60.9 76.6
Unvoiced 81.3 922 90.6

SIBILATION 96.9 93.8 94.5
Voiced 96.9 89.1 93.8
Unvoiced 96.9 98.4 95-3

GRAVENESS 80.5 78.1 8Z8
Voiced 92.2 81.3 93.8
Unvoiced 68.8 75.0 71.9

COMPACTNESS 78.9 78.9 82.0
Voiced 87.5 81.3 922 1
Unvoiced 70.3 76.6 71.9

OVERALL 88.7 85.2 ,_ 90.2____ _._.

h.. -.

Table 8. Attribute DRT scores for Vought, M12, and (Vought, M12) in 115 dB
noise, for speaker CH.
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RS 95 dB 115 dB
RS CH AVE. RS CH AVE

ACC*  3.0 5.4 4.2 3.7 4.2 4.0

M12 8.1 5.5 6.8 2.2 2.3 2.3
VOUGHT 7.6 5.8 6.7 3.0 2.5 2.8
(ACC, M12) 8.7 6.0 7.4 4.5 3.6 4.1
(ACC*, M12) 8.6 5.4 7.0 4.7 3.0 3.4 :

(ACC, VOUGHT) 8.7 6.3 7.5 3.9 3.5 3.7
(VOUGHT, M12) 8.5 5.7 7.2 3.4 2.8 3.1

Table 9. Mean speech quality ratings for the seven sensor systems, two speakers,

i .. an twtosecnitos
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I ,

microphones in both noise levels. For all sensors except the accelerometer, the mean quality

rating was higher for RS than for CH in both noise levels; the relationship was reversed for the

accelerometer. In fact, in 115 dB noise the mean rating, for CH was highest for the

accelerometer. The quality rating scores given in Table 9 suggest that the listeners were

primarily judging the level of the background noise in the test sentences.

For evaluating the statistical significance of the differences in the two-speaker speech

quality scores, we used the standard two-tailed t test as described above in Section 6.5.1. For

the present case, the number of judgments N is 36 (2 speakers x 6 listeners x 3 judgments per

item); the degrees of freedom df is therefore 70. We investigated the statistical significance of

comparisons of each two-sensor system with its constituent single sensors, requiring a

significance level of P < 0.05. (We did not consider (ACC*, M12) in this study.) Referring to

Table 9, we note that the observed speech quality improvements are significant only for two

cases in 95 dB noise, (ACC, M12) vs. ACC* and (ACC, Vought) vs. ACC*, and for three cases

in 115 dB noise, (ACC, M12) vs. M12, (Vought, M12) vs. M12, and (ACC, Vought) vs. Vought;

of these five cases, the first three are extremely significant (P < 0.000001),, the fourth case is

significant at P < 0.001, and the fifth case is significant at P < 0.007. Among the three two-

sensor systems, only the case (ACC, M12) vs. (Vought, M12) in 115 dB is significant (P < 0.02).
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7. RECOGNITION TESTS WITH THE VERBEX 4000

We tested and compared the performance of the various single-input two-sensor systems

and the individual sensors in speaker-dependent, isolated-word speech recognition, using the

commercial recognizer Verbex 4000 and three different vocabularies. Below, we describe the

Verbex 4000 recognizer and present and discuss the test results for the three vocabularies.

7.1 Description of Verbex 4000 Speech Recognizer

The Verbex 4000 is a speaker-dependent connected-word recognition system that can be

used for isolated-word recognition. Using the system requires two cartridges. The Master

Cartridge specifies the vocabulary, the grammar (an isolated-word grammar in our case), and

the training script that prompts the user in training mode. The User Cartridge is used to store

the speaker-dependent templates for all words in the vocabulary, and it is required for the

recognition phase. The performance evaluation of each multisensor configuration involves two

phases: a training phase and a recognition phase.

During the training phase, the Verbex unit first "enrolls" each word in the vocabulary; a

"seed" template for a vocabulary word is created after the unit accepts two tokens of the word

played into the unit's microphone port. After enrollment is complete, the unit prompts for the

vocabulary words in sequence. If the unit cannot successfully train a particular utterance, it

will prompt the user to repeat the word. However, after the word is input again, the unit will V

go on to prompt for the next vocabulary word, even if the second training attempt was

unsuccessful. Each training pass involves a single run-through of the entire vocabulary.

We note that training the recognizer directly in a high noise condition may often fail. In

our work, we conducted experiments to determine a sequence of training passes for each noise

condition that would prove as successful as possible during testing. Included in the training

procedures we considered were the following: N passes in the noise only, M passes in the quiet

followed by N passes in the noise, and a "staged" training sequence. (We considered different
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values for M and N.) The "staged" sequence would start with training in the quiet and lead up

to the desired noise condition via training in one or more intermediate noise levels. .

The Verbex Voice Planner Software, which was supplied with the Model 4000 and was

installed on our IBM-XT, gave us the capability to create new vocabularies and to back up

training data from memory cartridges onto floppy disks. For backups, the Verbex unit is

interfaced with one of the IBM-XT communications ports, and the contents of the cartridge of

interest are read while the cartridge is plugged into the Verbex unit. The restoration of

training data from floppy disk to cartridge is performed in a similar fashion.

7.2 Tests Using the 20-Word TI Vocabulary

7.2.1 Generation of Tapes for Recognition Tests

For testing with the 20-word TI vocabulary on the Verbex 4000, we generated tapes

containing the training and test sequences for each system-speaker-ambient noise condition.

For each condition, we recorded the following data onto tape from the multichannel master

tapes (see Section 6.2): first, ten sets of the TI words recorded in the quiet, for the first stage of

training with up to ten tokens per word; second, ten sets of the TI words recorded in the

ambient noise condition being considered, for the second stage of training with up to ten

tokens per word; and third, twenty sets of the TI words recorded in the desired ambient noise

condition, to be used in testing. For the sake of consistency, we employed the same two-sensor %

system parameters, filter cutoff frequency and gain, for both the training data in the quiet and

the training and test data in the noise. (We used the "optimal" parameters determined

through listening tests; see Section 6.2.)

We also digitized two full sets of the TI words from each set of "quiet" data for use in the

enrollment phase of training the device. Because the words on the tapes occurred sequentially -,

P""rather than in groups of two, the data needed to be rearranged; this was most easily

accomplished by digitizing the data, then playing out in any order desired.
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7.2.2 Test Results

The results of our recognition tests using the TI vocabulary are given in Table 10 for

speaker RS and in Table 11 for speaker CH. We note that, for most tests, a 5 kHz lowpass

filter was applied to the signal before it was input to the recognizer. This filter was used to

supplement the Model 4000's built-in anti-aliasing filter, which has a "soft" stopband roll-off

rate.

Considering the test results for the 95 dB case, we note that for all sensor systems except

ACC* we used 3 training passes in the quiet and 8 training passes in 95 dB noise. For ACC*,
we did not train in the quiet and used 10 training passes in 95 dB. Recognition tests were

performed always using the full 20 passes. For ACC* and two-sensor systems involving the

accelerometer, we highpass filtered the input signal prior to applying it to the recognition unit,

because the Verbex unit had trouble training successfully without such filtering. For ACC*,
we used in addition a sharp lowpass filter with cutoff at 3.2 kHz and a gradual lowpass filter

(24 dB per octave) with cutoff at 1.5 kHz; in the absence of the lowpass filters, the high-

frequency noise in the ACC* signal (enhanced by the accelerometer spectral shaping) caused
*. training problems. We note, however, that we did not attempt to find an "optimal" choice of

filters to use. Referring to Table 10, we see that for speaker RS recognition accuracy in 95 dB

was either 99.5% or 100% for both gradient microphones and all three two-sensor systems.
For M12, we used the same training cartridge and tested twice, obtaining 100% accuracy the

first time and 99.5% accuracy (2 substitution errors) the second time; the small difference in

accuracy between the two tests is not significant. The accelerometer alone produced 97.75%
accuracy for RS. Considering the 95 dB case for speaker CH, we see from Table 11 that

Vought yielded 100% accuracy. For (Vought, M12) we performed two separate runs of

training and testing, and obtained 98.25% and 99.25%. The two-sensor system (ACC,
Vought) had trouble training the words SIX, REPEAT, and EIGHT the required 8 times;

however, we trained these words with several training attempts in the single-word training

mode. We obtained a recognition accuracy of 93.75%; of the total 6.25% error, 5% was due to

REPEAT. For (ACC, M12), additional training attempts were required for the word

REPEAT; two separate runs of training and testing yielded 96.25% and 94.5%. M12 had
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difficulty training almost half of the vocabulary words; we therefore did not perform a
recognition test for M12, for CH. The training problems with M12 and (ACC, M12) for CH

may be attributed, at least in part, to the fact that some tape saturation occurred during data

collection because of excessive recording gain. The accelerometer alone produced 96.75% for

CH.

Next, let us discuss the results for the 115 dB case. For speaker RS, the two-microphone

system did not train at all on the four words SIX, ENTER, REPEAT, and TWO; it trained

successfully on all other words. Using the resulting training cartridge, we tested three separate
times with the results of 53.25%, 55.75%, and 5&.25%. The Vought microphone for speaker
RS had many training problems and yielded only 17.5% accuracy. The other two-sensor
systems we considered for either speaker did not train one-half or more of the vocabulary

words in 115 dB. The accelerometer alone produced very good results in 115 dB. With 10

training passes directly in 115 dB (no training in the quiet or in 95 dB), ACC* yielded 94% for
RS and 97.75% for CH. With 10 training passes each in 95 dB and in 115 dB, ACC* yielded
98.75% for RS and 97.5% for CH. The staged training therefore produced a sizeable

performance improvement for RS and no significant change for CH. With 10 training passes
in 95 dB only (none in 115 dB), ACC* produced 93.25% accuracy for RS and only 62% for

CH. This experiment was an attempt to examine the effect on recognition performance caused

V by differences between training and test conditions. ACC* seems to have robust performance
for RS but not for CH. The reason for this result may be that while- CH increased her
speaking level substantially in 115 dB relative to her level in 95 dB, RS increased his level to a

lesser degree.

A word of caution about interpreting the recognition performance of ACC* reported

above. While the accelerometer performance was impressive in 115 dB for the TI 20-word
vocabulary, its performance for other vocabularies could be much lower, since the

accelerometer is relatively insensitive to unvoiced sounds (see Sections 7.3 and 7.4).

In an attempt to improve the training and recognition performance of the Verbex unit in
115 dB noise, we investigated the effect of bandlimiting its input signal substantially below 5
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kHz for each of the two sensor systems, (Vought, M12) and (ACC, M12); such bandlimiting

renders the signal less noisy, as the noise amplitudes dominate the signal amplitudes at high

frequencies. For (Vought, M12) in 115 dB noise with speaker RS, we performed several

experiments to determine if lowpass-filtering the two-sensor signal would improve the

recognition accuracy. Cutoff frequencies of roughly 2 kHz to 3.5 kHz were of interest; a 5 kHz

cutoff frequency was used in our previous experiments in 115 dB noise. Because a filter with a

cutoff frequency below about 3.2 kHz caused enrollment difficulties with some words, all

enrollment was performed using a 5 kHz bandwidth. Traiiling (3 passes in the quiet and 10 in

95 dB noise) was performed using a cutoff frequency in the prescribed range. We then

attempted to train the system in 115 dB noise using this same cutoff frequency, and compared

the resulting training performance with that found in the earlier (Vought, M12) experiments.

We found that for the two cutoff frequencies we investigated, 2.2 kHz and 3.2 kHz, 9 words or

more per training pass in 115 dB noise would not train. No recognition tests were performed
because of the inferior training performance. We conclude from this investigation that

bandlimiting (Vought, M12) in 115 dB noise in this fashion does not improve the Verbex unit's

performance with this data.

We then attempted to repeat the original (Vought, M12) training procedure (3 passes in

the quiet, 4 in 95 dB, and 5 in 115 dB, with a 5 kHz lowpass filter) and found that, in the first

training pass for 115 dB, 11 words would not train. This performance was inconsistent with

the performance observed previously, but was roughly equivalent to the performance of the

more severely bandlimited signal discussed above. We suspect that 115 dB is too much noise

for the Verbex unit to provide stable and consistent performance for all sensors but the
r . , accelerometer. "

We also investigated the effect of more severely bandlimiting (through lowpass filtering)

the (ACC, M12) mix on its training and test performance. As with the (Vought, M12) system,

our filtering rationale was based on the idea that filtering out the signal's high-frequency noise

should improve its recognition performance; however, because the low-frequency component

of the (ACC, M12) signal is highly noise-resistant, we expected that such lowpass filtering

would be more effective with this system than it was with (Vought, M12). As a first test, we
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trained RS's (ACC, M12) using a 200 Hz highpass filter and a 3.2 kHz lowpass filter in the

input line. Three training passes in the quiet and 5 in 95 dB were performed. In the first

training pass in 115 dB3 noise, 10 words would not train; therefore, little performance benefit

was realized with a lowpass cutoff frequency of 3.2 kHz. We then reasoned that, employing

the same filters for (ACC, M12) that we used to test RS's ACC* in 115 dB noise (a highpass

filter with a 400 Hz cutoff frequency cascaded with two lowpass filters with cutoff frequencies

of 1.5 kHz and 3.2 kllz, respectively), similar results to those for ACC* should be achieved. It

is important to note that the 1.5 kllz filter used was a "soft" filter with a 24 dB/octave rolloff

rate; therefore, a significant component of the M12 signal could still be heard in the (ACC,

M12) mix after filtering. Using these filters, we performed 5 training passes in 95 dB and 10 in

115 dB; because the signal was fairly quiet due to the accelerometer's large share in the mix,

no training was needed in the quiet. Training in 115 dB went smoothly. Recognition accuracy

.0 for 20 passes of test data in 115 dB was 95.75%, which is within the range of test results found

for RS's ACC* (94%, 98.75%, and 93.25%). Keeping in mind that for RS in 95 dB, (ACC,
M12) with a lowpass cutoff frequency of 5 kHz yielded a recognition accuracy of 99.5%, we

can conclude that varying the filter cutoff frequencies as the background noise level changes

4.. allows the (ACC, M12) system to be used successfully for speech recognition in noise levels as

high as 115 dB. N

7.2.3 Conclusions

Since the recorded M12 signal for speaker CH involved tape saturation due to excessive

recording gain, we used primarily the recognition test results for speaker RS (Table 10) in

making the conclusions given below. In 95 dB noise, the two gradient microphones and the

two two-sensor systems provided similar recognition accuracy (about 99.5% for RS), which

was modestly higher (by about 2% for RS) than the accuracy provided by the accelerometer.

I .~ In 115 dB noise, only the accelerometer signal trained and tested successfully, yielding a

recognition accuracy of about 98%. As we expected, the recognition accuracy for the

accelerometer changed only slightly from 95 dB to 115 dB (accuracy increased by 1% in 115

MB), which indicates its robustness in noise.
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The recognition test results for the TI vocabulary suggest the use of the two sensors ACC

and M12 in one of two ways, for achieving the best performance for the TI vocabulary. The

first method involves a switching strategy based on the noise level: Use M12 for low noise and

ACC for high noise. (We conjecture that the threshold noise level for switching is about 100

dB.) The second method uses the two-sensor system (ACC, M12) and filters the output to

bandlimit the two-sensor signal as follows: 400 Hz HPF and 5 kHz LPF for low noise and 400

Hz HPF, 1.5 kHz LPF (gradual cutoff), and 3.2 kHz LPF (sharp cutoff) for high noise.

7.3 Tests Using a 25-Word Minimal Pairs Vocabulary

7.3.1 Selection of the Vocabulary

The recognition test results reported above do not provide any conclusive proof for the

superiority of the two-sensor systems over the individual microphones; this is the case because

1) the 20-word TI vocabulary is too easy at 95 dB for all our sensor systems in the sense that

each sensor system produced near 100% recognition accuracy for RS and 2) 115 dB is too

much noise for all but the accelerometer to even train. We had two options available for

resolving the problem: 1) test the TI vocabulary at an intermediate noise level such as 100 dB,

and 2) use a more difficult vocabulary in 95 dB noise. We rejected the first option because the
A accelerometer would have continued to produce a high recognition accuracy (mid to upper

901s) for the TI vocabulary, thus leaving little or no room for improvement with a two-sensor

system consisting of an accelerometer and a gradient microphone. For the second option, we

used a subset of our minimal pairs database in 95 dB noise, which we expected to provide

ample room for improvement with a two-sensor system. To gain some insights into recognition

performance with minimal pair words and to guide our selection of a proper subset of minimal

pair words, we examined in detail the attribute scores of the DRT tests in 95 dB noise, for

speaker RS. We note that the rhyming word pairs used in the DRT are, in fact, minimal pairs

because each pair of words differ only in the initial consonant.

Table 12 gives the DRT attribute scores for the individual sensors ACC*, M12, and
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ATTRIUTE * M V (A, (A,V) (V,M

VOIC3NG 96.1 100.0 100.0 100.0 98.4 98.4

Frictional 95.3 100.0 100.0 100.0 96.9 96.9

Non-Frirtinn*1 Qf 9 100.0 100.0 100.0 100.0 100.0

NASALJTY 86.7 95.3 94.5 93.8 93.0 97.7

Grave 78.1 92.2 89.1 87.5 85.9 95.3

Acute 95.1 98.4 100.0 100.0 100.0 100.0

SUSTENTION 81.3 96.1 93.8 94.5 96.1 96.1

Voiced 92.2 98.4 98.4 95.3 100.0 100.0

Unvoiced 70.3 93.8 89.1 93.8 92.2 92.2

SIBI.ATION 75.0 100.0 100.0 100.0 99.2 100.0

Voiced 82.8 100.0 100.0 100.0 100.0 100.0

Unvoiced 67.2 100.0 100.0 100.0 98.4 100.0

GRAVENESS 74.2 90.6 94.5 94.5 91.4 90.6

Voiced 98.4 100.0 100.0 98.4 98.4 100.0

Unvoiced 50.0 81.3 89.1 90.6 84.4 81.3

COMPACTNESS 74.2 98.4 96.9 98.4 98.4 97.7

Voiced 92.2 100.0 96.9 100.0 100.0 98.4

Unvoiced 56.3 96.9 96.9 96.9 96.9 96.9

OVERALL DRT 81.3 96.7 96.6 96.9 96.1 96.7

4-:,

Table 12. DRT attribute scores for various sensors in 95 dB noise, for speaker -
RS. Symbols A, A*, M, and V are used to denote unshaped accelerometer,
shaped accelerometer, M12, and Vought, respectively.
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Vought and for the two-sensor systems (ACC, M12), (ACC, Vought), and (Vought, M12), for

speaker RS in 95 dB noise. We see from the table that the attributes nasality-grave,

sustention-unvoiced, and graveness-unvoiced seemed to be a problem (as indicated by lower

scores) for all sensors. For the accelerometer, only voicing (both frictional and non-frictional)

and nasality-acute were not a problem. Even though the accelerometer produced 97.75%

accuracy for the 20-word TI vocabulary in 95 dB, it would give only 50% accuracy for a

vocabulary of words characterized by the graveness-unvoiced attribute.

We note that the DRT test results we received from Hanscom AFB provided, for each

attribute, the scores for the two cases: attribute present (i.e., the correct word has the

attribute in question) and attribute absent (i.e., the correct word does not have the attribute).

For items in Table 12 that have lower DRT attribute scores, we examined the scores for the

attribute present and attribute absent cases. This data is given Table 13, where we placed

asterisks next to scores that are lower than 92%, indicating that these cases provide room for
improvement. From Table 13, we see that the accelerometer yielded only 31% correct

recognition (by human listeners) when the spoken words with initial unvoiced consonants that

" were not compact were compared against rhyming words whose initial consonants were

compact (e.g., tea vs. key, so vs. show, peg vs. keg, fit vs. hit, etc.). From the results given in

Table 13 and from the list of DRT words, we found that the following sound pairs led to lower

DRT attribute scores for all our sensors in general: (m,b), (sh,ch), (th,t), (fp), (w,r), (b,d),

(m,n), (p,t), and (fth).

When we attempted to use all 44 words of the minimal pairs database with the Verbex
4000, the unit indicated that the grammar complexity for this vocabulary was 119%. The

recommended complexity is below 80%. We then found out that the complexity was 63% for

the first 20 words of the minimal pairs database and 85% for the first 30 words. Therefore, we

decided to use a vocabulary of 25 words.

From the 44-word minimal pairs database, we chose a subset of 25 words by covering all

the sound pairs (mentioned above) that yielded lower DRT attribute scores. The subset we

- chose is given in Table 14. The chosen subset consisted of all words in the categories, place for
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stops, place for nasals, and nasal-nonnasal and some words from the categories, place for

fricatives, voiced-voiceless, and sonorants. The grammar complexity of the chosen vocabulary,

as reported by the Verbex Voice Planner Software, was 74%.

Pode, Toad, Dope, Dote, Doak,

Code, Shod, Sod, Met, Bet,

Mode, Bode, Psalm, Sob Debt,

Get, Dode, Goad, Sog, Net,

Node, Sawn, Song, Let, Load.

Table 14. A vocabulary of 25 minimal pair words.

7.3.2 Tests for Single Sensors

Table 15 lists the tests for single sensors that we performed for speaker RS using this

vocabulary in 95 dB ambient noise. Because we had collected only 20 passes of minimal pairs

data, we used 5 tokens per word for training and 15 tokens per word for testing. It should be

noted that ACC here was unshaped. However, we believe that with the severe bandlimiting

applied to the signal here, shaping the signal would have made no significant difference. From

Table 15, we see that M12 and Vought yielded a substantially higher accuracy than did the

accelerometer. In contrast, the differences among the recognition accuracies of the three

single sensors were relatively small for the 20-word TI vocabulary in 95 dB noise. That the

accuracies of the three sensors were lower for the minimal pairs vocabulary than for the TI

vocabulary is a confirmation of the higher complexity of the minimal pairs vocabulary.

Tables 16 and 17 list the phoneme confusions that occurred in each test. The numbers in

the TOTAL column of each table indicate the maximum number of confusions possible among

words differing only in the specified phoneme pair. For example, the words BODE and PODE

could yield a total of 30 errors; this would occur if all 15 tokens of BODE were heard as

PODE, and vice-versa. Table 16 shows that ACC's greatest weaknesses for the test words are
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RECOGNITION

SYSTEM FILTERS ACCURACY

SINGLE SENSORS:

400 Hz,
ACC 1.5 KHz LPF, 61.9%

3.2 KHz LPF

M12 5 KHz LPF 78.9%

VOUGHT 5 KHz LPF 82.1%

TWO-SENSOR
SYSTEMS:

(VOUGHT, M12) 5 KHz LPF 80.8%

(ACC, M12) 200 Hz HPF, 81.3%
5 KHZ LPF

Table 15. Recognition accuracies obtained using the Verbex 4000 on our 25-
word minimal pairs vocabulary, for single sensors and two-sensor systems,
for speaker RS in 95 dB noise.
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CCNFLICN CLASSES TOT M V (A, M) (V. 4
POSSM__

Non-Frictional

[B] [P] 30 2 5 2 2 5
[D, [T] 90 4 0 2 1 0

[GI, K] 30 0 0 1 2 0

NAATY

Grave
[IM. [B 90 6 7 3 5 4

Acute

N D] 60 1 11 6 2 16

GRAVENESS

voiced
tB [o] 60 7 1 3 7 5

K ,M 90 10 4 6 2 0

Unvoiced

(PI [T] 60 10 2 0 A 2

CX"PACTNESS '-

Voiced t

[G, (D] 60 24 2 5 9 11

(G, (B] 60 1 9 8 11 10

Unvoiced

[K, (T] 60 0 0 0 2 0

[K], [P] 60 12 23 10 10 4

[SHI, [S]1 30 11 0 0 0 0

Table 16. Phoneme confusions for Verbex tests of 25 minimal pair words,
grouped by DRT category, for speaker RS in 95 dB noise. The numbers
tabulated indicate the number of confusions. The abbreviations, A, M,
and V denote, respectively, accelerometer, M12, and Vought.
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CONFIFACN TOTAL A H V QAM)I
CLASSES MOMSL _

[BI [K] 30 0 0 0 1 0

(BJILI 30 5 1 3 3 2

(BI (N] 60 0 0 1 0 0
Vj [K] 60 1 0 a 1 0
(DI CL] 30 1 0 0 0 0
(DI (MIl 60 0 0 1 1 3

[DI, [PI 60 0 0 2 0 2

[GI [K] 30 0 a 0 2 0

(GI [LI 30 2 a 1.- a a
(GI [MI 60 0 1 1 0 0
(GI (N] 60 0 2 2 0 3

[GI [PI 30 2 1 0 1 0

[GI (T] 30 0 0 0 1 0
(KI [LI 30 0 1 1 0 0

[KJ,['I1 30 1 0 0 0 1

ILI IM] 30 1 1 5 2 0

(LI (NI 30 2 0 0 0 0
ILI IN] 30 a 2 0 1 1

KMlINP .30 3 2 0 0 0

(NJ [NX] 30 0 3 3 1 3
[NJ MT 30 1 0 0 0 0

Total Numter of Non-
Minimal word Confusions 36 1 1 1 0

Table 17. For Verbex tests of 25 minimal pair words, phoneme and word
confusions that do not fall into DRT categories, for speaker RS in 95 dB __

noise. The numbers tabulated indicate the number of confusions. The P

aborevition A, M, and V denote, respectively, accelerometer, M12, and
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in the DRT categories of compactness and graveness, which were also problem areas for ACC*

in the DRT tests for speaker RS in 95 dB (see Table 13). However, the phoneme confusions for

the microphones were less consistent with the DRT test results than the confusions for ACC

were. For example, both microphones showed problems in the compactness category for the

Verbex tests, unlike for the DRT tests. Also, the problems encountered in the graveness

unvoiced category for the DRT tests are not reflected in the Verbex test results for either

microphone.

Several other items in Tables 16 and 17 are worth noting. First of all, the number of

non-minimal word' confusions, in which words differing by more than one phoneme were

confused, was far greater for ACC than for any of the other systems tested. Most of these

errors occurred where words were incorrectly recognized as ending in [ow] [d]. Secondly,

although the tables do not indicate in which direction the errors occurred (i.e., [n] recognized

as [d], or vice-versa), in a few cases the errors occurred much more frequently in one direction

than in the other. For example, [g] was recognized as [d] in 21 of the 24 [g],[d] confusions that

occurred for ACC. Also for ACC, [k] was recognized as [p] for all 12 of the [k],[p] confusions,

and [s] was recognized as [sh] for 10 of the 11 [s],[sh] confusions. For Vought, [p] was

recognized as [k] in 8 of the 10 [k],[p] confusions that occurred.

The test results for single sensors showed clearly that there was ample room for

improvement because even the highest recognition accuracy was only 82.1%. Before we

performed recognition tests for two-sensor systems, we examined the extent of improvement

achievable under an ideal situation, as described below. We assumed the ideal situation in

which the two-sensor system (S1, S2) would retain the good properties of both sensors S1 and

S2, by yielding a substitution error only if both sensors yielded that error; in other words, the

two-sensor system would not produce a substitution error if either sensor did not produce that

error. From the confusion matrices of the single sensors, we computed the number of

recognition errors for each two-sensor system, assuming the foregoing ideal condition. The

resulting recognition accuracies were 90.4% for (Vought, M12), 93.3% for (ACC, M12), and

95.7% for (ACC, Vought), which represented substantial improvements over the performance

of M12 and Vought. Encouraged by these potentially large performance improvements, we

decided to test the two-sensor systems.
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7.3.3 Tests for Two-Sensor Systems

The (Vought, M12) and (ACC, M12) signals for the 25 minimal pair words were

generated digitally. For (Vought, M12), the Vought signal was lowpass-filtered at 1800 Hz and

the M12 signal was highpass-filtered at the same frequency. The two resulting signals were

then combined in the same proportion used for the analog mixing of the TI data. Similarly, for .r..

(ACC, M12), the M12 signal was highpass-filtered at 1500 Hz before the two signals were

combined in the correct proportion. To reduce boominess, two 200-Hz analog highpass filters

were applied to the (ACC, M12) mix during testing. All digital filters used were 39th order

FIR filters.

Table 15 lists the overall results of the two tests. The phoneme confusions that occurred

during the tests are listed in Tables 16 and 17. These results make it clear that the ideal

situation that we suggested earlier did not apply here. For example, although the [k],[p]

distinction was more successful for both mixes than it was for the individual sensor signals in

each mix, the [g],[b] distinction for (ACC, M12) and the [g],[d] and [n],[d] distinctions for

(Vought, M12) were less successful for the mixes than for the single sensor signals. Therefore,

phoneme distinctions for the two-sensor systems were not always as good or better than the

same distinctions for the single sensors. It is also interesting to note that for (Vought, M12), [g]

was heard as [d] for 8 of the 11 [g],[d] confusions, and [n] was heard as [d] for all 16 of the

[n],[d] confusions. Because the overall recognition accuracies for these tests showed no

improvement over the results for the single sensor tests, we decided not to test (ACC, Vought)

for the minimal pair words.

7.3.4 Additional Tests

We performed three sets of additional tests, using the Verbex unit on the 25-word

minimal pairs vocabulary: 1) tests in the quiet; 2) training in the quiet and testing in 95 dB;

and 3) tests in 95 dB with increased training. The results of these tests are presented below.

First, we trained and tested the Verbex unit in the quiet for M12 and Vought, to obtain
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baseline data (for comparison with the test results in 95 dB, reported in Section 7.3.2) as well

as to determine (via such comparisons) if 95 dB noise is a problem for the two microphones.

Because we had a total of only 20 tokens per word, we trained the recognizer using ive tokens,

of which the final two were the same as the ones used for enrollment, and performed tests on

* the remaining 15 tokens, which produced the same test data size of 375 (=15 tokens x 25
words) as in the 95 dB tests described previously. The resulting recognition accuracy for the

quiet condition was 65.1% for M12 and 68.5% for Vought. From Table 15, these figures were,

respectively, 78.9% and 82.1%, for the 95 dB case. Therefore, the recognition accuracy

decreased substantially in the quiet relative to the 95 dB case, a result we did not expect.

When we discussed this issue with Dr. K. Ganesan of GTE Laboratories (who was formerly

with Verbex), he suggested that we reduce the input level of the Verbex unit to below the

recommended value of 300 my (peak-to-peak). From his experience with the Verbex 3000, he

observed that higher input levels could deteriorate the unit's performance. In our tests in 95
* dB noise and in the quiet, the input level varied over a range of 150-600 my. Following Dr.

Ganesan's recommendation, we included an additional attenuator and maintained an input

level below 300 my. We repeated the test for M12 in the quiet, using five unique training
tokens per word (i.e., we did not re-use the two enrollment tokens) and using the remaining 13
tokens per word for testing; this test yielded a recognition accuracy of 72.9%, which was

significantly larger than the earlier result obtained with a larger input level. For comparison,
we also repeated the test for M12 in 95 dB noise using the lower input level, with a training

sequence of 3 tokens in the quiet followed by 5 tokens in 95 dB; this test yielded 76.3%, which

was slightly lower than the earlier result of 78.9% given in Table 15. Although use of the

lower input level narrowed the gap between the recognition accuracies in the quiet and in 95
dB noise, the accuracy was still higher in 95 dB noise. We offer the following three possible

reasons for this unexpected result:

1. Speakers tend to talk more clearly and perhaps with less variability in (95 dB)
* .. ~noise than in the quiet.

2. Certain distance measures (e.g., log energy) are more sensitive to small variations
in background interference in the quiet than in 95 dB noise.
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3. Presence of some noise. helps mask small speaking differences among the tokens
of the same word.

In any case, since performance of the Verbex irecognizer was not worse in 95 dB noise

than in the quiet we concluded that 95 dB noise is not a problem for the microphones M12 and

Vought.

Secod, we trained the Verbex unit in the quiet (S tokens per word) and tested it in 95 dB
noise (15 tokens per word), for M12 and (ACC, M12); our motivation was to see if the two-

sensor system offered an advantage in such a "cross-condition test". We used the same filters

as given in Table 15. The recognition accuracy was 47.2% for M12 and 54.9% for (ACC,
M12); in contrast, the figures for the case involving both training and testing in 95 dB noise
were, respectively, 78.9% and 81.3%. These results show that the performance deterioration

(going from training in 95 dB to training in the quiet) was less for (ACC, M12) than for M12.
We note, however, that the cross-condition performance of both M12 and (ACC, M12) was

unsatisfactory.

The thid test we performed was based on the following observation. Because the

microphones M12 and Vought transduce speech quite well at 95 dB, (i.e., yield good SNR's),
the training sequence with 3 tokens per word in the quiet and S in 95 dB, which we used for the
95 dB; test results given in Table 15, might be roughly equivalent to training with 8 tokens per
word, all in 95 dB. This effectively increased training might have caused the recognition

accuracy in 9S dB to be better than that in the quiet condition (since the latter case involved
only 5 training tokens). To pursue this issue further, we increased the number of training

tokens per word to 3 in the quiet plus 10 in 95 dB noise and tested on the remaining 10 tokens,
for Vought. The recognition accuracy was found to be 80.8%, which is not significantly

different from the result for Vought given in Table 15.

The results presented above indicate that the low recognition accuracy of Vought and

M12 in 95 dB noise was neither due to background noise nor due to lack of sufficient training;

it was, we hypothesized, due to the duration of the initial consonant of each minimal pair word
being considerably shorter than the duration of the following vowel and consonant. See below
for more discussion of this point.
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7.3.5 Conclusions

Several conclusions may be drawn from the above-reported recognition test results. First,

using the accelerometer alone is, in general, not a good idea, since it yielded only 61.9%

recognition accuracy for the 25-word minimal pairs vocabulary. (In contrast, the

accelerometer yielded about 97% accuracy for the 20-word TI vocabulary.) As mentioned

earlier, the low accuracy provided by the accelerometer is in general agreement with the DRT

attribute scores presented earlier; we note that many of the minimal pairs in the 25-word

vocabulary involved attributes for which the DRT scores were low for the accelerometer.

Second, the recognition accuracies in 95 dB noise for the two microphones and the two

two-sensor systems ranged around 80% and were not significantly different from each other.

This result is, in one sense, in agreement with the DRT test results since the DRT scores of the

foregoing four sensor systems were also not significantly different from each other in 95 dB

noise (see Table 5). There is, however, one important difference: While the human

recognition accuracy, as given by the DRT tests, was about 95%, the machine recognition

accuracy, as given by the tests on the Verbex unit, was only about 80%. The reason for the

lower machine recognition accuracy, we hypothesized, was that the duration of the initial

consonant in the minimal pair words was quite short relative to the duration of the following

vowel and consonant. The initial consonants in each minimal pair (e.g., node and dode) were

different, with the rest supposed to be identical in both words. Because the overall distance

measure between a template and a test token is computed by averaging the frame-by-frame

distances, it can easily happen that phonetic differences (as computed by the recognition

device) in the short-duration initial consonant are masked by even small speaking differences

in the long-duration vowel and consonant part; this masking effect, caused by the extreme

durational differences between the two parts of the words, makes the machine recognition task

difficult, thus yielding a lower recognition accuracy.

Third, since the recognition accuracy of the Verbex unit was not higher in the quiet (it

was, in fact, lower) than in 95 dB noise, it is apparent that, as in the case of the 20-word TI

vocabulary, acoustic background noise at 95 dB was not a problem for Vought and M12.
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Fourth, the two-sensor system (ACC, M12) produced a significant improvement over M12

(54.9% vs. 47.2%) for the case where we trained the Verbex unit in the quiet and tested in 95 Pr

dB. Unfortunately, the improved performance was still unsatisfactory.

Finally, for effective demonstration of the advantage of a two-sensor system over its

constituent gradient microphone for speech recognition, we inferred from the results reported

above that we needed a vocabulary that 1) was more complex than the 20-word TI vocabulary

(so that the accelerometer alone would not yield a high recognition accuracy), 2) kept

durational problems as in the minimal pairs vocabulary to a minimum, and 3) had a noise level

higher than 95 dB but below 115 dB (e.g., 105 dB).

7.4 Tests Using a 13-Word Minimal Pairs Vocabulary

7.4.1 Selection of the Vocabulary

For this vocabulary, we chose a 13-word subset of the minimal-pair words, listed in Table

18. To reduce the severity of the durational problem, all of the words differ from each other,

at the least, by either the vowel (as in "heed" and "hud") or by both initial and final

consonants (as in "sog" and "shod").

Pet, Sog, Heed, Leave, Hid, Hood, Head,
Node, Dote, Fin, Had, Hud, Shod.

Table 18. A vocabulary of 13 minimal pair words.

7.4.2 Generation of 105 dB Data

We digitally generated the 105 dB waveform files for this vocabulary as follows. For each

utterance, we performed sample-by-sample addition of the digitized microphone (M12 or

Vought) signal in 95 dB noise with an amplified version of the digitized noise-only responses of
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the microphone in 95 dB noise. We set the noise amplification factor to be 9.54 dB, which

yielded a noise level of 105 dB in the resulting waveform. We broke up the noise response of

the microphone into 20 segments of about.1.5 seconds each, and used a different noise segment

with each of the 20 tokens of a given word. The foregoing digital simulation assumes that the

talker's speaking level remains the same in 95 dB noise and in 105 dB noise. (If, in fact, the

talker raised his speaking level by, say, 3 dB in going from 95 dB noise to 105 dB noise, then

the waveform we generated, as described above, would correspond to a background noise level

of 108 dB.) As a quick check of the noise level in the new waveform files, for each microphone,

we compared a plot of RO (energy) for a 95 dB file with a plot of RO for the corresponding 105

dB file. The energy difference between the two cases during non-speech regions, which is a

measure of the difference in the two noise levels, averaged between 10 and 11 dB for Vought

and between 9 and 10 dB for M12.

7.4.3 Test Results

The recognition accuracies for the tests of the 13-word vocabulary for speaker RS are

shown in Table 19. The tests in 95 dB were performed for reference purposes. We tested the

accelerometer (ACC) first, to ensure that its recognition accuracy allowed sufficient room for

improvement. Because ACC is essentially insensitive to acoustic noise, we assumed that the

ACC signal was the same for both 95 and 105 dB noise levels.

Some inconsistencies in these test results are apparent. The two recognition accuracies

shown for (ACC, M12) in 105 dB differ by 34.3%. The procedures followed for these two tests

differed only in the noise response waveform file used in each case; this file was played at the

beginning of each training and test session so that the Verbex unit could estimate the

characteristics of the background noise. During data collection we recorded this noise

response for each sensor before any speech data was recorded. Unfortunately, for ACC, the

short-term spectrum of this initial noise response, NOISE1, had more boost in the low-

frequency end relative to the high-frequency end than did the short-term spectrum of

NOISE2, the noise response extracted from the very beginning of an utterance file, before the
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SYSTEM FILTERS RECOGNITION ACCURACY
___ ___ __ ___ __ ___ __ 95 DB 10505B

400 Hz HPF,
ACC 1.5 kHz LPF, 90.8%o --

____ ___ ____ ___ 3.2 kHz LPF

VOUGT 5 ~z LF 928Fo 72.8%. 60.9%VOUGT 5 ~z PF 9.8%(Two Tests)

M 12 5 KHz LPF 95.47o 90.3%o

(ACC, M 12)
MODIFIED NOISE 1 200 Hz HPF, - 39%

UNMODIFIED NOISE 1 5 kHz LPF 7337

Table 19. Recognition accuracies obtained for speaker RS using the Verbex
4000 on the 13-word minimal pairs vocabulary.' "Modified Noise 1" and
"Unmodified Noise 1P are explained in the text.
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onset of speech. The reasons for this change in response are not clear, although it is possible

that the shape of the background noise itself might have shifted during the recording session.

This difference in shape between the short-term spectra for NOISEI and NOISE2 for ACC

caused a difference in shape between the spectra for the NOISE1 and NOISE2 that were

created digitally for (ACC, M12). A modification in the level of ACC's contribution to

NOISE1 for (ACC, M12) brought the shape of its short-term spectrum more in line with that

of NOISE2. The test employing this modified NOISE1 file for background noise estimation

yielded a recognition accuracy of 39%; on the other hand, when an (ACC, M12) NOISE1 file

incorporating no such modification ("unmodified NOISE") was used, the test yielded an ¢.\Y

accuracy of 73.3%. Another inconsistency is apparent in the recognition accuracies found for

Vought. The two test runs in 105 dB, which were performed identically, yielded recognition

accuracies that are 11.9% apart Interestingly, M12 yieldel! good recognition accuracy even in %."i
105 dB. The reasons for the discrepancies in performance noted above are unclear; therefore,

because the Verbex unit's performance with 105 dB data was unreliable, no conclusive

comparisons among single-sensor and twwsensor systems can be drawn. ..

" p'
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8. FEATURE-BASED PARALLEL-INPUT MULTISENSOR SPEECH
RECOGNITION

In the preceding sections, we described our work on single-input multisensor systems. In

this and the following section, we present our work that demonstrates the feasibility of using a

parallel-input multisensor system for high-performance speech recognition. From the results

of our long-term and short-term spectral analyses of the various sensors presented in Section

2, we have demonstrated that different sensors provide different kinds of information about

various speech sounds. In addition, some sensors are more immune to noise than others in a

given frequency band. To test the feasibility of using multisensor information in a parallel-

input speech recognition system, we investigated two different approaches. In the first, we

explored how the strengths of the different sensors in transducing certain phonemes might be

exploited in feature-based phonetic discrimination tests. If the use of features from multiple

sensors proved successful, the features could be incorporated into a feature-based speech

recognition system. In the second approach, called the long-vector approach, we obtained the

parameter data for the parallel-input multisensor system from individual sensor parameter

data by merging them on a frame-by-frame basis, thus generating "long vectors" of

parameters. We then tested the single sensor data and the long-vector data using our hidden

Markov model-based speech recognition research system.

For our parallel-input multisensor speech recognition work, we used as sensors the

Vought, M12, a throat accelerometer (position 10), and a nasal accelerometer; as vocabulary,

we used all or selected subsets of our minimal pairs database (see Section 6.2 and Appendix A).

Below, we present the feature-based approach in this section and the long-vector approach in

Section 9.

8.1 Acoustic-Phonetic Experiment Facility

In our investigation of the feature-based approach, we used BBN's Acoustic-Phonetic
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Experiment Facility (APEF) [6]. The APEF program allows a researcher to formulate and

perform an experiment in acoustic-phonetics in a short time. The capabilities built into APEF

that make it particularly fast and convenient to use include the following:

1. A highly interactive, powerful English-like programming language allows the

researcher to define the phonetic environments of interest and specify how to
compute the features for a given experiment.

2. APEF can access a large database very quic~kly.

3. APEF performs various statistical analyses *of features computed in an

N.. experiment. It also performs recognition tests and displays both the data and the
results.

4. The resulting acoustic- phonetic features and recognition algorithms can be
transferred directly to recognition programs.

8.1.1 Performing an APEF Experiment

If it is desired to find useful acoustic-phonetic features for a phonetic discrimination task,

the following steps are carried out using APEF. The search for features to test is performed by

plotting some precomputed parameters for several examples of the phonetic context of

interest, for example, voiced fricatives followed by vowels. Where significant differences in the

same parameter exist among the phonemes to be discriminated, a feature can be specified.

Once a set of features to test has been decided upon, a procedure to calculate the features can

be written and edited using the programming language included in APEF. Because APEF
"understands" the programming language used, it tries to catch logical errors in the

procedure. All or some logical subset of the database is then searched; for each occurrence of

the phonetic context found, the procedure is run to compute the desired features. Statistical

analyses can be performed on the feature data collected. The results of these analyses can be

displayed in a variety of plots, tables, or graphs. Finally, "fair" recognition tests that use jack-
knifing and a multivariate classifier are performed. Training involves the fitting of a Gaussian P
distribution to all the data points collected for each feature under study. During testing, each
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sample is first removed from the multivariate distribution, then classified according to the

modified distribution. From the test results, the best set of features for performing the

phonetic discrimination can be determined.

8.1.2 Typical APEF Experiment

To provide a better understanding of how the AP771W program was used to perform tests

for the feature-based parallel-input system, we presew aere an example of a typical APEF

experiment.

A listing of the algorithm used to perform the discrimination between initial voiced

plosives and initial unvoiced plosives with Vought in 95 dB noise is given in Fig. 12. This

experiment tried to exploit the fact that the puff noise energy in the Vought signal was larger

for unvoiced plosives than for voiced plosives. The first line of the algorithm lists the phonetic

context of interest, which in this example is voiced or unvoiced plosive followed by a vowel; the

algorithm is only executed on those utterances having this context. Steps 1 through 12 specify

the features and related quantities to be calculated for use in discrimination tests.

Fig. 13 gives two examples of the plots, created by steps 13 through 18 of the algorithm,

for the utterances DODE and TOAD, respectively. LEZ is low-frequency energy; MEPZ is

mid-frequency energy. Appendix B contains the definition of LEZ, MEPZ, and a number of

other parameters and features we used. The differences in puff noise energy between the two

utterances shown is apparent in the LEZ plots between the times "back 5" and "bot". Also

shown at the top of Fig. 13 are the values calculated in each step of the algorithm for the two

utterances.

Finally, Fig. 14 illustrates two APEF commands employed in the search for useful

features. The "Statistics Table" command lists a feature's statistics grouped according to the

phonetic classes being discriminated. The "Gather Distr for Discrimination" command

performs a test to discriminate among the classes of interest. Included in the listing of test

results are the definitions of all features used, the percentage of utterances correctly classified,

and a confusion matrix for the classes being discriminated.
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For Context (voiced plosive unvoiced plosive) (vowel)
Tabulate
11 Change Parameter File Extension to PR3
2) tmax.

Time o'f maximum of parameter Derivative of MEPZ from 10 until 60
3) bot

Next time that parameter Derivative of MEPZ from tmax until 0
is less than 0.5

4) back 5.
Difference of bot and 5

5) mstartavg.
Average of parameter MEPZ from back 5 until bot

6) Istartavg
Average of parameter hEZ from back 5 until bot

7) mmin
Minimum of 5 and back 5

8) msllavg
Average of parameter MEPZ from 0 until mmin

9.) Isilavg
Average of parameter LEZ from 0 until mmin

10) mdiff.
Difference of mstartavg and msilavg

11) ldiff.
Difference of Istartavg and Isilavg

12) Ivsmdiff.
Difference of ldiff and mdiff

13) Set up parameter plot between 0 and 100
14) Plot parameter LEZ with lower limit 10 and upper limit 80

in Y-space of 200 with axis name LEZ
15) Plot parameter MEPZ with lower limit 10 and upper limit 80

in Y-space of 200 with axis name MEPZ
16) Vertical Cursor on plot at tmax
17) Vertical Cursor on plot at bot
18) Vertical Cursor on plot at back 5

FIG. 12. APEF algorithm listing for the discrimination between voiced plosives
and unvoiced plosives in the word-initial position.
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M~ist all results

1) 56 T, 80 OW, 90 TOADS02,
1) 0, 2) toax: 33, 3) bot: 30, 4) back 5: 25, 5) *startavg: 26.2448,
6) Istartavg: 43.6602, 7) =in: 5, 8) *silavg: 18.4165,
9) Iii lavg: 28.7521, 10) Wiff: 1.76836, 11) lditf: 14.9081,
12) 1vsdttt: 7.13973, 13) 0, 14) 0, IS) 0, 16) 0, 17) 0, 18) 0,

2) 50 0, 80 OW, 90 DOOESI2,
1) 0, 2) toax: 32, 3) bot: 26, 4) back 5: 21, 5) *startavg: 18.3932,
6) Istartavy: 27.6371, 7) Wn: 5, 8) *silivg: 19.4214,
9) lsiavg: 29.2167, 10) indift: -1.02819, 11) Idiff: -1.57963,
12) ivsadirf: -0.551441, 13) 0, 14) 0, IS) 0, 16) 0, 11) 0, 18) 0,

MEPZ

LEZ

DODES02

LEZ

0 U U UU UUU UTOADS02 m u

FIG. 13. Examples of APEF plots and algorithm results for two utterances.
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D>statisric C ;I-
12)viadiff

Difference of 1.11ff and ndiff
Label Deerminer: functions 0 of claases:_L

Uwithi f n~y I vlm~lsv
13) Check If label on segment 0 1Iwes (voicad.plosive) (confirm]

use true values? In
Another filter function? ja
Use true results? X
248 samples are inth is class
Class name: 11
Remaining - 80 samples are in this class
Class name: M

VP 240 -3.2 1.6 -4.8 -2.2 1.1 4.6
up 83 11.3 4.9 -1.1 5.4 17.2 23.3

M~ather Distr for DiscrliINtion

How many features:j1
Using features 1) : l3smifL

12) Ivsndiff:
Difference of 1.11ff and indiff

Label Determiner: same as last time Also discriminate classes now? yes

12) 1vsmdiff: i.eooeo0

VP UP

vpj 238 3
upj 2 77

D)*ather Distr for Discrimination

"ow many f eatures: J.
Using features 1) :11f

11) 1.11ff:
Difference of lstartavg and lsilavg

Label Determiner: SamN as lAst tine Also discriminate classes now? yes

11) 1.11ff: 1.60008

VP 2 lv

upl 3 77

FIG. 14. An APEF statistics vable and two discrimination tests.
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8.2 Data Preparation

Before we could use our APEF program to find features for the parallel-input system, a

number of preparations had to be made. First, for speaker RS's 95 dB minimal pair data, we

created parameter files with our utility program called PSA. This program calculates 44

parameters per 10 ms frame of the waveform. Included among these parameters are energy

measures such as RO as well as first, second, and third formant frequencies. One parameter

file for each utterance/sensor combination was created. Second, we generated a label file for

every utterance. A label file contains the phonetic spelling of the speech contained in the

corresponding waveform file; because each APEF experiment operates only on data occurring

within a user-specified phonetic context, the program needs the phonetic spelling of each

utterance to determine which utterances should be included in a given experiment. Third, in

order that we could use features derived from more than one sensor signal in recognition

experiments, we modified the APEF program to enable it to process multiple parameter files

for each utterance.

8.3 Phonetic Discriminations We Tested

Our selection of minimal pair distinctions to study was influenced by two factors: 1)

which distinctions gave trouble for one or more sensors in the Verbex minimal pairs tests, and

2) which distinctions we expected would be helped by the use of multisensor information.

Table 20 givesthe phonetic discriminations we chose to use for testing the feature-based

parallel-input system, along with abbreviations to refer to the discriminations conveniently.

All initial-position phonetic discriminations we studied involved the two vowel contexts, [o] (as

in MODE) and [e] (as in BET); for final-position discriminations, B-D-G/F involved the vowel

[a] (as in SOB) only and NAS-VP/F involved both [a] and [o]. We note that in all cases,

discriminations were performed without regard to the vowel. To see what minimal pair words

we used in various discriminations, consult Table 4.

79

." " " -- " ""...' .' ' .-

,;i', €' . ' ,. '.-,' ," € .' .'. '. '. ,,_ .', -'' .. .. €' _,. ,,,',' ,' ". L ' ." . ' .. ".-.. ,. ..--. .- ,. .-.. . .- .-.. .--. . . '



DIS RIINATION ABBREVIATION # OF TOKENS PER CLASS

[m] vs. [n] M-N/I M: 38 N: 40
(initial position)

[b] vs. [d] vs. [g]
(initial position) B-D-G/I B: 60 D: 140 G: 40
(final position) B-D-G/F B: 20 D: 20 G: 20

nasals vs. voiced plosives
(initial position) NAS-VP/I NAS: 78 VP: 240
(final position) NAS-VP/F NAS: 99 VP: 420

voiced vs. unvoiced VP-UVP/I VP: 240 UVP: 80
plosives (initial position)

[p] vs. [t] vs. [k] P-T-K/I P: 40 T: 20 K: 20
(initial position)

Table 20. Selected phonetic discriminations included in our study.

8.4 Selection of Features

We did not place any constraints on the choice of features that could be used in a given

discrimination; whatever features yielded the best performance for each sensor or sensor

combination were chosen, regardless of the features used for the same discrimination with

other sensors. The "best" feature combinations were usually found with APEF's "Find

Optimal Features" option. In this option, APEF executes the "Gather Distr for

Discrimination" command for all possible combinations of features derived from a given

feature set; the minimum and maximum number of features allowed in the combinations are

set by the user. APEF then prints out the results for the feature combinations from best to,

worst based on discrimination performance. Because of time constraints, not all possible

sensors or sensor combinations were tried for every discrimination. Also, the set of "optimal

features" we found for each discrimination was based only on those features that we could find

so
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and test within a few hours; with more study, addit'-nal useful features might have been

found. Finally, for many of the discriminations listed, more than one set of features gave

results equal to or nearly equal to those shown. For example, for VP-UVP/I with throat

accelerometer, two features together ("lezcdifr' and "mrise") yielded a 96.9% result, which

was only 0.3% less than the result obtained with the single feature "lezclose". For a

description of features we used, refer to Appendix B.

For some of the M-N/I and B-D-G/I discriminations studied, we found that large, abrupt

changes (hereafter referred to as "glitches") in smoothed formant frequencies F2M and F3M

(see Appendix B) frequently occurred where formant features were being measured. This

glitching was noticeable for the throat accelerometer as well as for the two microphones in 105

dB. For those discriminations where glitching was observed for the sensors of interest,

modifications were made to the formant feature measurements to exclude glitches. We also

conducted experiments where no glitch-detection was performed. In some cases, employing

glitch-detection improved performance; in others, the opposite was true. In a real system, the

formant tracker could be optimized for each sensor individually to minimize glitching.

For some phonetic discriminations studied, we could find "no useful features" for a

particular sensor. For our purposes, we define "no useful features" to mean either that 1) our

visual inspection of the parameters available in APEF showed no significant differences among

the phonemes to be discriminated or that 2) testing of features that looked promising never

yielded performance better than 70%, either alone or in combination with other features.

The primary goal of our APEF investigation was to demonstrate that using multiple

sensor signals leads to higher recognition accuracies in selected phonetic discrimination tests .7

than using single sensor signals does, under high-noise conditions. Within this goal, we

developed a set of reasonable features listed in Appendix B. For each phonetic discrimination

and for each sensor or sensor combination, we determined the optimal features combination as

described above. If the performance of a certain optimal features combination was not

satisfactory, it is quite possible that by developing additional features through further work,

one may have been able to improve the performance to an acceptable level. We did not,

I
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however, attempt to do this because of the limited scope of the project. It is in this sense that

our investigation is not complete or exhaustive. However, we believe that the test results

presented below for 105 dB noise show that we achieved our primary goal stated above.

8.5 Test Results in 95 dB Noise

The results of the phonetic discrimination experiments performed with APEF for the 95

dB data are listed in Table 21. (We did not include M12 in our tests in 95 dB noise.) For a

given discrimination, we list for each sensor z'!y the highest performance score achieved for

all features and feature combinations tested. Examination of Table 21 clearly shows that

Vought did very well by itself in 95 dB noise for all of the phonetic discriminations we studied.

In no case did the throat accelerometer yield better performance; the only discriminations for

which another sensor performed better than Vought was NAS-VP/F. Here, the nasal

accelerometer was superior. Overall, these results support our previous finding obtained with

the Verbex 4000 that 95 dB noise is not a problem for the Vought microphone. Table 22 lists

the features used in the 95 dB tests shown in Table 21. Descriptions of these features can be

found in Appendix

Since Vought alone performed well in 95 dB for all discriminations studied, the value of

combining features from multiple sensors was unclear. Therefore, to make the discriminations

more difficult, we chose to increase the background noise level for both microphones to 105

dB, using the procedure described in Section 7.4.2. Because the accelerometers are essentially

insensitive to acoustic background noise, we used the same parameter files for the

accelerometers for both the 95 and 105 dB tests.

8.6 Tests in 105 dB Noise

Table 23 gives recognition accuracies for single and multiple sensors in 105 dB noise. We

have used the notation {V,M} to denote the two-sensor parallel-input system involving Vought
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SINGLE SENSORS
TEST BEST SINGLE

V A NA SENSOR

V
M-N/I 97.4% 94.9%

97.4%

V
6-0-G/l 100% 90.4% V

100%

V
B-D-G/F 98.3% 96.7%

98.3%

V or NA
NAS-VP/I 99.1% 99.1% 99.1%

NA
NAS-VP/F 96.3% 98.1%

98.1%

V
VP-UVP/I 98.4% 97.2% 98.4%

V
P-T-K/I 97.5% 97.5%

Table 21. Performance of single sensors in selected phonetic discrimination tests
listed in Table 20, in 95 dB noise. The abbreviations V, A, and NA denote,
respectively, the Vought microphone, the throat accelerometer, and the
nasal accelerometer. The symbol * indicates cases that were not
investigated and the symbol ** indicates cases that did not have any useful
set of features.

83



TEST V A NA
f2diff

M-M/ f2diff f2vow
f3diff f3dfiff

f3vow
cdiff

f2diff f2diff
B-D--G/I f2vow f2vow

f3dliff f3diff
f3vow f3vow
cdiff cdiff

________consilmepz

B-D-G/F f2dfiff f2trans
f2vow f3diff
f3dfiff f3trans
f3vow MvOW

consntconsntNA-PI energy energy

NA-pF energy nasccdiff
____ ____ ___ diff__ _ _ _ _ _ _ _ _ _ _ _ _ _

VP-U VP/I Ivsmdiff lezclose

zcdfiff
P-T-K/I lezdiff
P-T-K/I vot

Mepzdiff ______ _____

Table 22. Best feature sets for single sensors in 95 dB noise. (See Appendix B for
definitions of the features listed.)
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and M12. (In contrast, our notation (V, M) denotes the two-sensor system that mixes the
Vought and M12 signals to yield a single speech input.) Table 24 lists the features used in the

discriminations tests shown in Table 23.

For M-N/I and B-D-G/I, a combination of features from two sensors was found to give the

best results, while in all other categories (except for P-T-K/I) one of the accelerometers gave

the best performance. Compared to the results in Table 21 for 95 dB noise, the results in

Table 23 for 105 dB noise show a degradation in Vought's performance of 2.5% or more in

every category. (It is interesting to note that, although our short-term spectral analysis of the

Vought signal indicated that it does not transduce nasals and voiced plosives well, Vought's

APEF tests of M-N and B-D-G at both noise levels yielded a performance of 88.3% or better.)

For P-T-KII, the features that worked well for Vought in 95 dB could not provide better than

62% performance for Vought in 105 dB. Features tried for M12 gave roughly the same

performance. Because of these poor results, the {V,M} combination was not tried for P-T-K/I

in 105 dB.

In all categories shown in Table 23, the "best overall" case yielded fewer than one-half the

number of errors made by either microphone alone. The Vought microphone alone performed

reasonably well for all discriminations, yielding accuracies ranging from 88.1% to 94.9%. The

reason for this high performance is that the features used were chosen separately for each

phonetic discrimination, as we mentioned above. However, the "best overall" case reduced .

recognition errors to between one-half and one-twelfth of the number produced by Vought;

this substantial improvement is due to the additional freedom to select the best sensor or

sensor system for each phonetic discrimination. Furthermore, the accuracy produced by the

"best overall" case is excellent with a range from 96.7% to 99.1%, at 105 dB noise. We may

interpret the "best overall" case as one in which we select the sensors and features to use as a

function of the phonetic context in question; this may be possible in a two-pass recognition

algorithm, with a conventional single microphone system performing the first pass and the

parallel-input system performing the second pass. These results indicate that a feature-based

recognition system incorporating features from all four sensors is likely to perform

substantially better than a system using features from one sensor only. We hasten to add,
-.
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TEST V M VM} [A, V}

f2cliff A. f2diff
M-N/I f2vow f2vow

cdifff3diff V:
f3vow f3vow
f2cIiff f2dfiff V: f2cff A: f2dfiff
f2vow. f2trans cdfiff f2vow

B-D-G/I f3cif diff f2diff f2difff3vow f~jfV: f2vow
cdiff f3trans f2trans f3diff

f3diffcdf
_ _ _ _ _ _ __ _ _ _ _ _f3 tra n s d f

f2vow f2dfiff
B-D-G/F f3vow f2vow

cdiff f3vow

NASVp/ cosntV: coflsftconsntenergy
energy diff slope

slope slope Iv consnt
energy

_______________ slope

NAS-P/F burstdiff burstdiff
________ cliff cliff

VP-U VP/I Idiff

Table 24. Best feature sets for single and multiple sensors in 105 dB noise. (See
Appendix B for definitions of the features listed.) -
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however, that for a complete feature-based isolated-word recognition system, the recognition

accuracy is likely to be less than the highest figures reported above for individual
discrimination tests.

I

N8

88 %

SFI



LABS INC CAMBRIDGE MA V R VISUANATNAN ET AL AUG B
88N-6114 RADC-TR-86-B7 F38682-84-C-BBB

UNFE ASFFIED 9tU

EhEEEEEEEE1hhE
IEEE.oolso



11.51.
I- E2

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS -I963-A

Zf-

~~Z*



9. LONG-VECTOR APPROACH TO PARALLEL-INPUT
MULTISENSOR SPEECH RECOGNITION

The long-vector approach presented in this section is a simple way of taking advantage of

multiple, parallel inputs; also, it allows the use of an existing speech recognition algorithm for

testing its effectiveness. This approach consists of forming, on a frame-by-frame basis, a

composite or long vector of parameters by simply collecting together the parameters extracted

from each of the parallel inputs and evaluating the long-vector data using an existing speech

recognition algorithm. In our investigation of the long-vector approach, we used BBN's

research speech recognition system, which uses vector quantization and a discrete hidden

Markov model. Below, we describe the method we used for extracting parameters from

individual sensor signals, review our vector quantization algorithm, describe BBN's hidden

Markov model-based recognition system, and present the results of recognition tests of

parallel-input multisensor systems, individual sensors, and a single-input two-sensor system.

9.1 Parameter Extraction

Because we wished to select information to be included in the long vectors based on

knowledge about the frequency location of this information for each sensor, we chose to use

parameters based in the frequency domain. Then, for example, if the information in certain

frequency bands for the accelerometer were buried in noise, as we would have expected in the

higher frequencies, we could include only the spectral-band parameters for the lower

frequencies in the long-vector data; in this way, we would eliminate the noisy bands from

further consideration. Generalizing this procedure, we could assign different weights to

different spectral bands, reflecting, for example, our prior knowledge of the quality of

information in individual spectral bands. We used Mel-frequency warped and cepstrally

smoothed spectral-band parameters, since Mel-frequency warping has been found to yield

good speech recognition performance [7]; cepstral smoothing was performed to remove the

pitch structure from the short-term spectra.
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The procedure we used to compute the spectral-band parameters is as follows. For each

10 ms frame of the waveform file, we calculate the cepstrum of the signal over an analysis

interval of 20 ins by

1. calculating the log magnitude spectrum P(w)=loglXn(w)l;

2. performing energy normalization on the spectrum using the formula

P'(w)=P(w)-<P(w)>, where <P(w)> is the average over frequency;

3. Mel-warping the frequency scale of the spectrum, using the transformation fmei =

log2(1 + fH/1000); and

4. taking the inverse discrete Fourier transform (DFT).

Energy normalization is performed so that the cepstral values obtained are independent of the

signal energy. After retaining the first IS points of the cepstrum and setting the rest of the

points to zero, we calculate the DFT of the truncated cepstrum. The average power values, in

dB, of the DFT points in 25 equally spaced bands on the Mel-warped frequency scale yield the

spectral-band parameter values of interest. These bands cover the frequency range 0-5000 Hz.

Because of the Mel-warping, the spectral bands below 1 kHz are narrower than those above 1

kHz; in this way, the set of spectral-band parameters place greater emphasis on the signal's

low-frequency information than on its high-frequency information. Table 75 lists the center

frequency in Hz for each of the 25 spectral bands. We note that we lowpass filtered each

sensor signal at 5 kHz and digitized at 10 kHz; no other filtering was applied to the digitized

waveform files before calculating the spectral-band parameters.

Those spectral-band parameters that are considered most useful for each sensor are

chosen for inclusion in the long-vector parameter files. For each 10 ms frame, the parameters

of interest from each sensor are concatenated to form a single long vector; the resulting long

vectors are written into a new parameter file. We note that if testing of a single sensor is

desired, the creation of long-vector parameter files is not necessary.
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BAND CENTER FREQUY HZ

1 36
2 114
3 196
4 285
5 381
6 483
7 593
8 712
9 839

10 976
11 1122
12 1280
13 1450
14 1632-

-~15 1827
16 2037
17 2263
18 2505
19 2766
20 3045
21 3346
22 3669
23 4016
24 4389
25 4789

Table 25. Center frequencies of the 25 spectral bands we used.
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9.2 Vector Quantization

The parameter vector representing a frame of speech is quantized to the nearest vector

from a codebook of templates; usually we use codebooks of 256 templates. This vector

quantization process is necessary because our speech recognition system uses discrete hidden

Markov models, which model the statistical structure of discrete random processes. We

explain in the following section the details of hidden Markov models.

The codebook is obtained by using a clustering algorithm on a "training set" of

parameter vectors to determine the required number of templates. We typically use 5,000 to

100,000 vectors to determine codebooks with 256 to 1024 templates. In this research effort, we

used a hierarchical clustering algorithm that defines a binary tree on the templates to speed up

the quantization of a vector (instead of computing n distances to determine the nearest

template, only 2 log2 n distances are required with the tree). The binary clustering algorithm

requires two orders of magnitude less computation than the traditional full-search K-means

clustering algorithm [8]. The computational savings is particularly important in our case

because each choice of the long vector requires the design of a new quantizer. We expect the

loss in performance due to our use of the binary tree instead of the full search to be small. The

distance measure we used in vector quantization was the weighted Euclidean distance,

although we used unity weights in our investigation.
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9.3 Discrete Hidden Markov Model-Based Speech Recognition

9.3.1 Hidden Markov Model

In evaluating the long-vector approach for parallel-input multisensor speech recognition,

we used a speech recognition research system that was developed in an earlier [R&D project.

The research system is flexible and can perform both isolated-word recognition and

connected-word recognition. It also supports the use of a syntax for a particular task. The

system uses a discrete hidden Markov model for each word in the vocabulary.

A discrete hidden Markov model (HMM) is described by the following items:

" A set of states, called S, in which we distinguish two particular states: i) 0, the
initial state, and ii) LAST, the final state.

" A transition matrix A over S-{LAST} x S-{0}, where the element A(ij) is the a
priori probability of a transition from state i at time t to state j at time t+l.

" An output matrix B, where each column is a discrete probability density function
(PDF) associated with each state of S-{0}. B(kj) is the probability of observing
output symbol k at time t if the state at time t is j.

The model starts in the initial state. Then, at each time instant t, it selects the next state based

on the previous state and the transition matrix. Assume that the model goes to state j at time t

given that it was in state i at time t-1 (the probability of selecting j is A(ij)). At state j, the

model will select an output symbol according to the density B(kj); the output symbol y(t) is the

observed quantized spectrum at time t.

When a sequence of output symbols y(1), y(2 ),... , y(T) (quantized spectra) is observed,

we need to determine the probability that a given hidden Markov model produced that

sequence. Note that many state sequences x(1), x(2),..., x(T) can produce the same observed

sequence. Therefore, the probability of the observed sequence is
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Pr[y(1), y(2).... ,y(7)] = 1 Pr[y(1), y(2), ... , y(T) Lx(1), x(2),... ,x(7)],

where the summation is over all values of x(1), x(2),..., x(T). To compute these probabilities

efficiently we use the forward-backward algorithm [9, 10]. To estimate the model parameters

from a set of tokens for a word, an iterative algorithm is used to adjust the transition matrix

and the output matrix to increase the likelihood of observing the training tokens for that word,

given the model at each iteration.

To recognize a given sequence of observations, for every word model we compute, using

the Viterbi algorithm [10], the state sequence most likely to produce that sequence of

observations. The recognition algorithm selects the word model that has the largest "a-

posteriori" state sequence probability (i.e., given the observations) as the recognition decision.

.In previous work performed with our research system, we found that allowing 3 states

per phoneme gave good recognition performance. Because each minimal-pair word consists of

three phonemes, we chose to employ a 9-state model for the words. We used the 9-state model

for the pause found before and after each word as well; no attempt was made to optimize the

number of states used in the model.

\ 'C : 9.3.2 Training of the HMM Recognizer

Training the HMM recognizer involves computing the values of the state transition

probabilities (9 x 9) and output symbol probabilities (9 x N) for each frame of input, where N is

the number of output symbols; N=256 for 8-bit vector quantization. The input files ("tokens")

contain the output symbol for each frame of the utterance as chosen by the vector quantizer.

To train a word model, we do not use endpoint detection. Instead, we use a pause model

before and after the word model and train all three models simultaneously. The pause model
is trained initially using 15 frames of silence at the beginning of two tokens for each

vocabulary word (a total of 60 tokens). Each vocabulary word model, along with the pause

model, is then trained on 10 tokens. Ten iterations of training were performed on the entire

set of 10 training tokens to obtain a word model.
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9.3.3 Testing with the HMM Recognizer

Testing consists of finding for each test token which vocabulary word (including optional

initial and final pauses) was likely to have caused the test token's sequence of quantized output

symbols. Testing was performed on the 10 tokens per vocabulary word that were not used for

training.

9.3.4 Performance of Our HMM Speech Recognition Research System

Our non-real-time HMM speech recognition research system, was developed at BBN in

an IR&D project. In tests of the system performed in that project, we found that 1) the system

yielded a 99% recognition accuracy for speaker-dependent recognition of the E set, ahd 2) for

speaker-independent recognition, the system had digit recognition rates'of 98.6% for isolated

digits and 95.5% for connected 7-digit strings. These test results clearly show that our

research system performs speech recognition very successfully.

9.4 Selection of the Vocabulary

Because a large vocabulary increases the difficulty of the recognition task with single

sensors, it provides more room for possible improvement in recognition performance with

multiple sensors. Therefore, a large vocabulary was desirable for the long-vector approach,

and we could handle a large vocabulary because our research system places no constraints on

vocabulary size, unlike the Verbex unit. However, we also wished to minimize what we

hypothesized was a durational problem with the minimal pairs vocabulary, which was first

encountered during the Verbex tests (see Section 7.3.5). By truncating (or "chopping") the

parameter files for each sensor at a frame located partway into the vowel of each utterance, we

sought to both minimize the durational problem and retain a large vocabulary size.

Because we wished to use "chopped" data, it was necessary to eliminate from the original I
44.word minimal pairs vocabulary those words whose initial consonant and vowel duplicated
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those of another word; for example, because the original vocabulary contained both "sod" and

"sog", the word "sog" was removed. The resulting 30-word vocabulary is listed in Table 26.

Met, Heed, Doze, Leaf, Sod, Hid, Goad,
Sin, Code, Bet, Debt, Get, Hood, Let,
Head, Mode, Shod, Ret, Net, Load, Wet,
Pode, Yet, Fin, Had, Toad, Pet, Hud,
Hod, Node.

Table 26. A 30-word minimal pairs vocabulary.

As discussed in Section 7.3.4, acoustic background noise at 95 dB was found not to be a

problem for Vought and M12 for speaker RS's data. Therefore, for the purpose of our long-

vector work, we chose to raise the noise level of RS's microphone data to 105 dB digitally,

following the same procedure used to generate the 1os dB waveform files required for both

our APEF work and our tests with the Verbex 4000. This procedure is outlined in Section

7.4.2. However, when we compared a plot of the RO (energy) contour for CH for a typical

utterance in 95 dB with the RO contour for RS for the same utterance in 105 dB, both as

transduced by M12, we found that the peak SNR for CH in 95 dB was very close to RS's peak

SNR in 10S dB, and was about 13 dB. These plots are shown in Fig. 15. The similarities.in

SNR's can be attributed to a difference in speaking level between the two speakers as well as

differences in microphone placement. Therefore, because the peak SNR's of RS in 105 dB and

CH in 95 dB were comparable, we decided to use CH's 95 dB data without adjustments to its

ambient noise level.

For both speakers, we used the throat accelerometer (ACC) and nasal accelerometer

(NAS) data recorded in 95 dB, since the accelerometer is essentially insensitive to acoustic

noise.
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SPEAKER RS 105 Da
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SPEAKER CH 95 DB
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FIG. 15. Plots of waveforms and energy contours for the word "BET"
transduced by M12 for speaker CH in 95 dB and speaker RS in 105 dB.
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I9.5 Recognition Tests

For convenience, we use in the text and tables a shorthand notation to describe single

sensors and long-vector multisensor systems under test. We present two examples to explain

this notation. [1(1-25)] indicates that for the Vought microphone, the spectral bands 1

through 25 were included in the single-sensor test being discussed. [ACC(I-15), M12(1-25)]

indicates that the first 15 spectral bands for the throat accelerometer and all 25 bands for M12

were included in the long-vector system under test. All references to single-input multisensor

systems, such as those used in tests with the Verbex unit, are enclosed in parentheses; i.e.,

(ACC, M12).

In addition, we note that many sensor systems were tested twice. If a second test is listed

for a given system, it was performed by switching the training and test tokens (10 each per

vocabulary word) used in the first test. Because the data for the two tests is non-overlapping,

we may average the two test results together; then, we can consider the average as the result of

a test of 20 tokens per word.

9.5.1 Tests on "Chopped" Data

Tests on "chopped" data were performed for speaker RS only. The "chopping" was
performed by truncating the single-sensor parameter files before vector quantization was

performed. This truncation was performed automatically, using a decision rule which found

the beginning of the vowel in each utterance by searching backwards from within the vowel for

the first frame where the derivative of RO (energy) exceeded 4 dB. If no derivative greater

than 4 dB was found, that frame having the largest derivative was chosen. Twelve was added

to the index of this frame to find the index of the "chopping" frame; the four SS parameter

files of interest for the given utterance (ACC and NAS in 95 dB, Vought and M12 in 105 dB)

were then truncated at this "chopping frame". Vought's 95 dB parameter iles were used to

find the "chopping frame", because the truncation algorithm worked more reliably on 95 dB

data than on 105 dB data.
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The recognition accuracy obtained for the chopped single-sensor parameter data, which

included all 25 spectral-band parameters, is 52% for M12, 50% for Vought, 78.5% for ACC,

and 58.8% for NAS. It is therefore clear that for the 30-word chopped vocabulary, the

recognition performance of all single sensors, except the ACC, is poor. We then performed

one long-vector test for the chopped data. For this test, the long vectors contained the first 15

spectral-band parameters for ACC and all 25 spectral-band parameters for M12. The

resulting recognition performance was 83.9%, which was significantly better than the

performance of either ACC or M12 alone for the chopped files.

To investigate our hypothesis that "chopped" data should yield superior performance to
"unchopped" data, we repeated the same 30-word test conducted for [M12(1-25)]'s chopped

data on its unchopped data; a recognition accuracy of 87.20/g, an improvement of 35.2% over

the recognition accuracy found for the test of the chopped data, was achieved. This result

refutes our hypothesis concerning the usefulness of chopped data; therefore, we conducted all

our subsequent long-vector work with unchopped data only.

.A..

9.5.2 Tests on "Unchopped" Data

Tables 27 and 28 list the recognition accuracies for single sensors and long-vector

configurations for speakers RS and CH, respectively. We can make several observations about

the recognition accuracies we obtained. First, for speaker RS, [V(1-25)]'s recognition accuracy

was roughly 8% poorer than [M12(1-25)]'s for the same training and test sequence ("Test 1"

in Table 27). Comparison of plots of RO in 105 dB for both microphones showed that Vought's

peak SNR was roughly 3 dB less than M12's peak SNR; the difference in recognition

performance we found can be attributed to this difference in SNR's. Because of its poorer

performance and to reduce the number of different multisensor configurations to test, we

chose not to include the Vought in any long-vector tests. Second, the recognition accuracies

obtained for the data for the two speakers were roughly the same (within 2-3%) for the same

configurations. In particular, using the single sensor [ACC(1-15)] led to a recognition rate of

87.8% for RS and 85.8% for CH; when the single sensor [M12(1-25)] was tested, the
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SENSOR RECOGNITION ACCURACIES

CONFIGURATION TEST 1 TEST 2 AVERAGE

[ACC (1-15)] 88.3% 87.3% 87.8%

[ACC(1-25)] 90.9% 89.3% 90.1%

[M12(1-25)] 87.2% 82.7% 85.0%

[V (1-25)] 79.5% -:
'

[NAS (1-25)] 82.9% -

[ACC (1-15), M12 (1-25)] 943% 90.0% 92.2%

[ACC (1-25), NAS (1-25),
M12 (1-25)] 94.6%

Table 27. Recognition accuracies obtained for the 30-word minimal-pairs
vocabulary tested for speaker RS in simulated 105 dB ambient noise.
Explanations of the notations used for sensor configurations and the .
differences between "Test 1" and "Test 2" can be found in the text.
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SENSOR RECOGNITION ACCURACIES

CONFIGURATION TEST 1 TEST 2 AVERAGE

8-BIT CODEBOOK

[ACC (1-15)] 86.3% 85.3% 85.8%

[ACC (1-25)] 92.6%

[M12 (1-25)] 84.9% 88.3% 86.6%

[ACC (1-15), M12 (1-25)] 95.0% 92.0% 93.5%

[ACC (1-25), M12 (1-25)] 95.0% -

10-BIT CODEBOOK

[ACC (1-15)] 83.9%

[M12 (1-25)] 82.6% ,

[ACC (1-15), M12 (1-25)] 92.0%l

Table 28. Recognition accuracies obtained for the 30-word minimal-pairs
vocabulary tested for speaker CH in 95 dB ambient noise. Explanations of
the notations used for sensor configurations and the differences between
"Test 1" and "Test 2" can be found in the text.
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recognition rate was 85% for RS and 86.6% for CH. Third, for both speakers, when ACC and

MI2 were combined using the long-vector method to form [ACC(1-15), M12(1-25)], the

resulting recognition accuracy was substantially better than that of either sensor tested alone;

the recognition rate increased to 92.2% for RS and 93.5% for CH. These results clearly show

that the use of spectral-band parameters from multiple sensors in the long-vector approach for

HMM recognition yields performance superior to that obtained when only the parameters

from one of the constituent single sensors are used. In these experiments, the long-vector

* approach yielded a 40% lower error rate than that of the best constituent sensor for the

multisensor system [ACC(1-15), M12(1-25)].

Fourth, comparisons between the recognition accuracies for [ACC(1-15)] and

[ACC(1-25)] for both speakers show that including the parameters from the upper 10
frequency bands improved recognition performance. However, the 95.0% recognition

accuracy obtained for CH for [ACC(1-25), M12(1-25)] is the same as that found for "Test 1" of

[ACC(1-15), M12(1-25)], which used the same sequence of training and test tokens as did the
[ACC(1-25), M12(1-25)] test. In other words, no improvement was realized by including those

same 10 bands for ACC in the long vectors. In a similar example, even though [NAS(I-25)]

achieved a recognition accuracy of 82.9% by itself, the inclusion of NAS's 25 parameters and

bands 16-25 of ACC in [ACC(1-25), NAS(1-25), M12(1-25)] for speaker RS improved

performance over [ACC(1-15), M12(1-25)] only marginally. We note that in the first example,

by including 10 more parameters from ACC in the long vectors, we increased the number of

parameters in each vector from 40 to 50; in the second example, by including the additional

ACC and NAS parameters, we increased the vector length from 40 to 75 parameters. We

believe that using more training tokens and a larger codebook size would enable the presence
of these additional parameters in the long vectors to improve recognition performance. It is

probable that the 50- and 75-parameter vectors are too large for an 8-bit codebook to quantize

effectively.
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9.5.3 Additional Tests

9.5.3.1 Spectral Resolution in Vector Quantization

Because [ACC(1-15)] and [M12(1-25)] were each quantized with an 8-bit codebook, the

quantization of the long vectors in [ACC(1-15), M12(1-25)], which contains all 40 of the

parameters, reduced the effective number of bits used for the quantization of each parameter.

This loss of spectral parameter resolution caused an increase in the mean-squared

quantization error for each parameter in the long vector. For speaker CH, Fig. 16 gives a plot

of the total quantization error for [M12(1-25)] (curve 1), [ACC(1-15)] (curve 2), [ACC(I-15), S.',

M12(1-25)] (curve 5), and the individual contributions of ACC and M12 to the foregoing long

vector (curves 3 and 4). By comparing curves (1) and (3), we find that when an 8-bit codebook

was used for quantizing the long vector, we were effectively using a codebook size of 5 bits for

the M12 component and 7 bits for the ACC component; in other words, M12 lost 3 bits of

resolution and ACC lost 1 bit of resolution when they were combined into the long vector and

quantized, compared to when each was quantized separately. The relative bit allocation

between M12 and ACC in the long-vector approach can be controlled by adjusting the

parameter weights. We note that this particular choice of bit allocation may be slightly under-

representing the information in M12.

In an attempt to improve the spectral resolution for each sensor in [ACC(1-15),

M12(1-25)], we increased the codebook size from 8 bits (256 templates) to 10 bits (1024

templates); we then clustered, quantized, and tested the data. We see from Fig. 16 that a 10-bit

codebook for the long vector yields effective codebook sizes of 8.5 bits for ACC and 6.6 bits for

M12; M12's effective codebook size is still slightly smaller than the 8-bit codebook size of the

single-sensor cases. The recognition accuracy we obtained for CH with the 10-bit codebook

was poorer by 3% than that obtained from the data quantized with an 8-bit codebook, as seen

from Table 28. Because only 10 tokens per vocabulary word were used for training, we

believed that the number of spectral templates, which was increased by a factor of four, was

too large in this case to allow adequate training of each word model; this insufficient training

led to degraded recognition performance. To confirm this reasoning, we also tested the single
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FIG. 16. Quantization errors (in dB) for Speaker CH for [ACC(1-15)I,
[Ml2(1-25)], and [ACC(1-15),M12(1-25)], as found for different codebook
sizes.
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sensors [ACC(145)] and [M12(1-25)], using the 10-bit codebook. As expected, the recognition

accuracies were lower with the 10-bit codebook than with the 8-bit codebook: 83.9% vs.

86.3% for [ACC(1-15)] and 82.6% vs. 84.9% for IM12(1-25)]. We expect that increasing the

amount of training data would alleviate this problem. For a limited database case such as

-, ours, smoothing techniques may be used to improve the robustness of the HMM word models. .

However, because of the time and resource constraints of this project we were unable to

investigate this possibility.

9.5.3.2 Tests of Simulated Single-Input Multisensor Systems

The long-vector approach for parallel-input multisensor systems has been demonstrated

to lead to improved recognition performance. In this section, we report on some experiments

that tested single-input multisensor configurations with our speech recognition research

system. The research system allows more controlled experimentation than the Verbex system,

which did not even train in some instances.

To compare the test performance of the single-input system (ACC, M12) with that of the

parallel-input [ACC, MI long vector, we performed several tests using three different

simulated single-input (ACC, M12) systems in 105 dB noise for speaker RS. The results of

these tests are shown in Table 29.

The first system tested was the same digital mix used to test (ACC, M12) with the Verbex

4000 (see Section 7.3.3). After noise was digitally added to RS's M12 data in 95 dB to achieve

an effective 105 dB noise level, the M12 waveforms were highpass-filtered at 1500 Hz before

the ACC and M12 waveforms were combined in the correct proportion; no highpass-flltering

of the ACC signal was performed. We designate this system, tested using all 25 spectral

parameters for the mix, as [(ACC, M12)(1-25)]. Referring to Table 29, we find that the

performance of [(ACC, M12)(1-25)J is about the same as that of [M12(1-25)], slightly worse

than that of [ACC(1-15)], and significantly poorer than that of the long-vector [ACC(1-15), IM12(1-25)].

Next, we simulated the single-input system (ACC, M12) by using the long vector,
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SENSOR RECOGNITION

CONFIGURATION ACCURACY

[ACC (1-15)] 88.3%
[M12 (1-25)] 87.2%

[(ACC, M12) (1-25)] 86.9%

[ACC (1-15), 866%
M12 (16-25)]

[(ACC, M12)], USING
AVERAGE OF ACC

AND M12 FOR BANDS 88.3%
1-15 AND M12 FOR

BANDS 16-25.

4.

Table 29. Tests of simulated single-input (ACC, M12) systems performed for
speaker RS in simulated 105 dB ambient noise.
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[ACC(1-15), M12(16-25)). The choice of bands used for each sensor is akin to Iowpass-filtering

ACC and highpass-filtering M12 at roughly 1900 Hz before combining the two signals. Recall

that for (ACC, M12), M12 was highpass-filtered, but ACC was not lowpass-filtered. However,

since ACC's energy above 1900 Hz is small relative to M12's, we expected this simulation to

have the same performance as [(ACC, M12)(1-25)], described above; this, in fact, proved to be

the case. The resulting recognition accuracy for the 30-word test was almost 8% lower than

that of [ACC(I-15), M12(1-25)]. This result indicates that removing the low-frequency

information for M12 for the sake of enhancing subjective quality may, in fact, be harmful for

machine recognition.

Because M12's low-frequency information appeared to be useful for an (ACC, M12)

system, we conducted another test in an attempt to improve performance without the use of a

parallel-input long.vector for the two sensors. In this simulation, we replaced each of the 15

spectral bands used for ACC in the previous test with the average '(Spectral

Band(ACC) + Spectral Band(M12))/2, and retained bands 16-25 for M12 in the parameter

vectors to be tested. The recognition accuracy for this system was 88.3%, which was slightly

better than for [ACC(1-15), M12(16-25)] but still significantly poorer than the long vector

[ACC(1-15), M12(1-25)]. It appears, therefore, that although the low-frequency information

for M12 is useful, combining its parameters in the low-frequency spectral bands with ACC's

by simple averaging is not effective; to achieve an improvement in performance over the best

constituent sensor, each sensor's low-frequency parameters must be included in the long

vectors separately, as in [ACC(I-15), M12(1-25)].

9.5.4 Summary of Results from the Long-Vector Approach

We can summarize the results of our tests of the long-vector approach as follows. First,

the parallel-input two-sensor system consisting of ACC and M12 achieved a recognition

accuracy that was substantially better than the accuracy achieved by either sensor alone.
Second, we found that when ACC is used alone, all 25 of its spectral-band parameters should Pq

be used; on the other hand, when its parameters are combined with M12's parameters in long
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vectors, bands 16-25 of ACC can be omitted from the long vectors with no loss in recognition

accuracy. Finally, the recognition performance of the parallel-input two-sensor system was

substantially better than the performance of the single-input two-sensor system.
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10. SUMMARY AND CONCLUSIONS

In this research, we investigated both single-input and parallel-input multisensor systems.

To provide a rationale for developing these multisensor systems, we performed long-term and

short-term spectral analyses and an articulation index study of previously measured data of

one male and one female speaker. The results of our subsequent investigation of the two types

of multisensor systems are summarized below, separately for each type.

10.1 Single-Input Multisensor Systems

We developed a spectral shaping method for improving the performance of a two-sensor

configuration consisting of an accelerometer and a gradient microphone. Also, we developed

several additional multisensor configurations, including a two-microphone system. A selected

set of two-sensor systems and individual sensors were tested in 95 dB and 115 dB levels of

simulated F-15 fighter aircraft cockpit noise, using formal speech intelligibility (DRT) and

quality (10-point rating) tests. The test results show the spectral shaping method to be

ineffective. The two-sensor systems tested produce essentially the same DRT scores and

quality ratings in 95 dB and much higher DRT scores and quality ratings in 115 dB, as

compared *to the constituent individual microphones. Therefore, for high-noise applications

involving human listeners, the two-sensor systems are clearly superior to any single

microphone.

We tested and compared the performance of the various two-sensor systems and the

individual sensors in speaker-dependent, isolated-word speech recognition. We used the

commercial recognizer Verbex 4000 and three different vocabularies: a 20-word TI

vocabulary (95 dB and 115 dB fighter aircraft cockpit noise), a 25-word minimal pairs

, vocabulary (95 dB noise), and a 13-word minimal pairs vocabulary (105 dB noise). In noise

levels higher than 95 dB, the Verbex unit did not train and test successfully for many of the

C cases involving microphones. Of the two 95 dB cases, the 25-word minimal pairs vocabulary
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was found to have a durational problem (see Section 7.3.5) that limited the achievable

recognition performance. Because of these problems, we cannot make strong definitive

statements comparing the performance of the two-sensor systems with the performance of the

individual sensors. We can, however, make the following conclusions. Since the accelerometer

is relatively insensitive to acoustic background noise, its recognition performance is essentially

constant in different noise levels. For certain vocabularies (e.g., the 20-word TI vocabdlary),

the accelerometer also provides a good recognition accuracy (upper nineties for the TI

vocabulary). For these cases, we suggest the use o? a gradient microphone in low noise (say,

below 100 dB) and the accelerometer in high noise, for achieving the best performance. For

vocabularies involving discrimination only among unvoiced consonants, the accelerometer

performs poorly in recognition as compared to gradient microphones. Even in these cases, the

accelerometer would outperform the gradient microphone in sufficiently high noise levels. As

a reasonable compromise, we suggest the use of a two-sensor system involving the

accelerometer and a gradient microphone, with the provision that we filter the two-sensor

signal using a lowpass filter with a 5 kHz cutoff in 95 dB noise and progressively lower cutoffs

in higher levels of noise; in very high noise levels (e.g., 115 dB), the filtered signal may become

almost the'same as the accelerometer signal.

10.2 Parallel-Input Multisensor Systems

We demonstrated the feasibility of parallel-input multisensor speech recognition, using

selected phonetic discrimination tests. We extracted features from individual sensor signals

and determined the best overall case for each phonetic discrimination test by selecting the best

of individual sensors and parallel-input two-sensor systems. In 105 dB noise, the feature-based

recognition approach produced recognition accuracies, for different phonetic discriminations,

in the range 88.1% - 94.9% for a gradient microphone and in the range 96.7% - 99.1% for the

best overall case, with the latter case reducing the recognition errors to between one-half and

one-twelfth of the number in the former case. "

As a simple way of taking advantage of multiple, parallel inputs and to be able to use an
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existing recognition algorithm, we then investigated a long-vector approach. In this approach,

we formed, on a frame-by-frame basis, a long vector of parameters by merging the parameters

of the parallel inputs provided by the individual sensors and evaluated the long-vector data

using a discrete hidden Markov model-based speech recognition system. In our isolated-word

recognition tests, we used a difficult 30-word minimal pairs vocabulary spoken by two talkers,

a male in 105 dB simulated F-15 aircraft cockpit noise and a female in 95 dB noise. The results

of our tests show that the parallel-input two-sensor system consisting of a throat accelerometer a

and a gradient microphone produced a recognition accuracy of 92.2% for 105 dB and 93.5%

- for 95 dB; the accuracies of the constituent sensors were, respectively, 85.0% and 86.6% for

the gradient microphone and 87.8% and 85.8% for the throat accelerometer. Compared to

the gradient microphone, the two-sensor system cut the recognition errors almost in half in

both cases.

We have thus demonstrated the feasibility of parallel-input multisensor speech

recognition and developed a simple and effective way of using multiple, parallel inputs with an

* existing recognition algorithm. Further research is warranted for modifying the recognition

* algorithm to exploit fully the parallel inputs and hence to achieve even more impressive gains

in the recognition accuracy than the ones we reported above.
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Appendix A

DETAILS OF THE MULTISENSOR TEST DATABASE

Sentences

Print a draft of this letter.
I think someone's made a mistake.
Curt will put the box on my desk.
There's room for five more lines in the footnote.
Judy will lose the game of chess.
We need to make a bowl of soup.

20-Word TI Database

yes, no, erase, rubout, repeat,
go, enter, help, stop, start,

one, two, three, four, five,
six, seven, eight, nine, zero.

Minimal-Pair Words (ordered randomly)

met, psalm, heed, doze, leaf,

doak, sod, hid, goad, sin,
(rhymes with soak)

leave, code, bet, debt, sob,

get, lease, hood, dode, dope,
(rhymes with node)

let, sawn, head, mode, shod,
(rhymes with lawn)

bed, ret, net, song,
(rhymes with let)

load, dote, wet, pode, dose,
(rhymes with toad)

yet, fin, had, toad, pet, 11
bud, hod, node, sog, bode. _"

(rhymes with bud) (rhymes with dog)
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Appendix B

i! ACOUSTIC-PHONETIC FEATURES

The following frame-by-frame parameters played a part in. the useful acoustic-phonetic

6 features found in the APEF experiments:

1. CM75 -- The frequency (in Hz) above which 75% of the energy in the pre-
emphasized speech spectrum lies.

2. F2M -- The second formant, after 3-point median smoothing.

3. F3M The third formant, after 3-point median smoothing.

4. LEZ -- The low-frequency energy, measured over a 120-440 Hz range, which has
been smoothed with a 3-point zero-phase filter.

5. MEPZ -- The energy in the pre-emphasized LPC spectrum measured over a
640-2800 Hz range, which has been smoothed via a 3-point zero-phase filter.

6. ROP -- The energy in the pre-emphasized spectrum.

7. RIX - The first autocorrelation coefficient, in dB.

'- .8. ZC - Number of zero crossings over a frame. The DC component is removed
before ZC is calculated.

The acoustic-phonetic features we investigated are listed below. After the name of each

feature, the number of the figure that should be referred to is given. If the definition of a

feature is based on another feature in the list, the definition number of the second feature is

given after its name. The words "initial" and "final" refer to cases where the discrimination

was performed for initial and final consonants, respectively. Note that the figures which show

energy contours from the Vought microphone are given merely to show the approximate

regions, relative to the vowel in the utterance, where the features are measured. The energy

J.. contours in the figures do not necessarily correspond to the same words or parameters

involved in a given feature.

1. burstdiff (Fig. 18) : LEZ at point F, where the plosive release would be expected -

LEZ at point D, the time of LEZ's minimum value over the range from the vowel
to point F.

Used in NAS-VP/F test.
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FIG. 17. Low-frequency energy contour for "PSALM" spoken by RS in 95 dB.
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FIG. 18. Low-frequency energy contour for "NODE" spoken by RS in 95 db.
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FIG. 19. Low-frequency and mid-frequency contours for "PODE" spoken by

RS in 95 dB.
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This value tended to be larger for voiced plosives than for nasals, because
usually voiced plosives had an energy peak at F and a drop at D, while the nasals'
energy stayed fairly level or dropped slightly from D to F.

2. cdiff (Fig. 17) : cvow($) - ctrans, where ctrans = average CM75 in region C
(initial) or F (final), during the CV or VC transition.

Used in M-N/I, B-D-G/I, and B.D-G/F tests.

3. consilmepz (Fig. 18) : consmepz - silmepz, where consmepz - average MEPZ in
region B, and silmepz = average MEPZ in region A.

Used in B-D-GII test.

Consilmepz tended to be larger for [d] than for [b] and [g].

4. consent energy (Fig. 18) : average LEZ in region B (initial) or
E (final)

Used in NAS-VP/I and NAS-VP/F tests.

In initial position, this value tended to be larger for nasals than for voiced
plosives; in final position, the opposite was true.

5. cvow (Fig. 17): average CM75 in region D (initial) or E (final)

Used in B-D-G/F test.

6. diff (Fig. 18) : egy in cons- leznoise, where
egy in cons = average LEZ in region B (initial) or E (final), and leznoise - average
LEZ in region A.

Used in NAS-VP/I and NAS-VP/F tests.

In initial position, this value tended to be larger for nasals than for voiced
plosives; in final position, the opposite was true.

7. f2diff (Fig. 17) : f2vow(9) - f2trans(8)

Used in M-N/I, B-D-G/I, and B-D-G/F tests.

8. f2trans (Fig. 17) : average F2M in region C (initial) or F (final)

Used in B-D-G/I and B-D-G/F tests.

9. f2vow (Fig. 17) : average F2M in region D (initial) or E'(flnal)

Used in M-N/I, B-D-G/I, and B-D-G/F tests.
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10. f3diff (Fig. 17) : f3vow(12) - f3trans(l1)

Used in M-N/I, B-D-G/I, and B-D-G/F tests.

11. f3trans (Fig. 17) : average F3M in region C (initial) or F (final)

Used in B-D-G/I and B-D-G/F tests.

12. f3vow (Fig. 17) : average F3M in region D (initial) or E (final)

Used in M-N/I, B-D-G/I, and B-D-G/F tests.

13. Idiff (Fig. 18) : lstartavg- lsilavg, where
lstartavg = average LEZ in region B, and
Isilavg = average LEZ in region A.

Used in VP-UVP/I test.

Ldiff tended to be larger for unvoiced plosives than for voiced plosives, probably
because of increased puff noise.

14. lezclose (Fig. 18) : average LEZ in region C

Used in VP-UVP/I test.

Because of pre-voicing of initial voiced plosives, lezclose for ACC tended to be
larger for voiced plosives than for unvoiced plosives.

15. lezdiff (Fig. 19): lezatb - leznoise, where
lezatb = value of LEZ at burst, and
leznoise = average LEZ in region A.

Used in P-T-K/I test.

Lezdiff tended to be largest for [p] and smallest for [t].

16. ivsmdiff (Fig. 18) : ldiff(13) - mdiff, where
mdiff = mstartavg - msilavg, where
mstartavg = average MEPZ in region B, and
msilavg = average MEPZ in region A.

Used in VP-UVP/I test.

Lvsmdiff tended to be larger for unvoiced plosives than for voiced plosives,
probably because of increased puff noise.

17. mepzdiff (Fig. 19) : mepzatb - mepznoise, where
mepzatb = value of MEPZ at burst, and
mepznoise = average MEPZ in region A.
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Used in P.T-K/I test.

Mepzdiff tended to be largest for [t] and smallest for [p].

18. nasaccdiff (Fig. 18) : LEZ at point F - average LEZ in region A

Used in NAS-VP/F test.

Because nasalization was usually much stronger at point F for nasals than for
voiced plosives, nasaccdiff, found with the nasal accelerometer, was usually larger
for nasals than for voiced plosives.

19. slope (Fig. 18) : average derivative of LEZ in region C

Used in NAS-VP/I test.

This value tended to be smaller for nasals than for voiced plosives.

r0pdiff (Fig. 19) : r0patb - rOpnoise, where
rOpatb = value of ROP at burst, and
rOpnoise = average ROP in region A.

Used in P-T-K/I test.

This value tended to be largest for [t] and smallest for [k].

20. rlxdiff (Fig. 19) : rlxatb - rlxnoise, where
rlxatb = value of RIX at burst, and
rlxnoise = average RIX in region A

Used in P-T-K/I test.

This value tended to be largest for [p] and smallest for [t].

21. vot (Fig. 19) : vow -burst, where
vow = time of maximum derivative of MEPZ over region B, and
burst = time of burst.

Used in P-T-K/I test.

Vot tended to be largest for [p] and smallest for [t].

22. zcdiff (Fig. 19) : zcnoise - zcatb, where
zcnoise = minimum value of ZC in region A, and
zcatb = value of ZC at burst.

Used in P-T-K/I test.

Zcdiff tended to be largest for [p] and smallest for [t].
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